【題目】如圖,拋物線的頂點(diǎn)為,交軸于點(diǎn),(點(diǎn)在點(diǎn)的右側(cè)),點(diǎn)在第一象限,且在拋物線部分上,交軸于點(diǎn).
(1)求該拋物線的表達(dá)式.
(2)若,求的長.
【答案】(1);(2)5
【解析】
(1)已知拋物線頂點(diǎn)坐標(biāo),可得,,解出a和c,即可求出拋物線解析式.
(2)作PH⊥OD,交OD于點(diǎn)H,CF⊥PH,交PH于點(diǎn)F,設(shè)P(a,),根據(jù),列出關(guān)于a的關(guān)系式,求出a,分別求出DH和OH ,OD=OH+HD即可求解.
(1)由題意,得,
由(1),得(3),
把(3)代入(2),得
∴拋物線的表達(dá)式
故答案為:
(2)作PH⊥OD,交OD于點(diǎn)H,CF⊥PH,交PH于點(diǎn)F,
設(shè)P(a,)
由題意,得,
化簡,得,
解得a=2,或,
∵在拋物線部分上,
∴舍去
DH=2PF=2(3-a)=2,OH==3,
∴OD=OH+HD=3+2=5.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,拋物線y=ax2+bx-3與x軸交于A(-1,0),B(3,0)兩點(diǎn),與y軸交于點(diǎn)C.
(1)求拋物線的解析式.
(2)如圖,直線BC下方的拋物線上有一點(diǎn)D,過點(diǎn)D作DE⊥BC于點(diǎn)E,作DF平行x軸交直線BC于點(diǎn)F,求△DEF周長的最大值.
(3)已知點(diǎn)M是拋物線的頂點(diǎn),點(diǎn)N是y軸上一點(diǎn),點(diǎn)Q是坐標(biāo)平面內(nèi)一點(diǎn),若點(diǎn)P是拋物線上一點(diǎn),且位于拋物線對(duì)稱軸的右側(cè),是否存在以點(diǎn)P,M,N,Q為頂點(diǎn)且以PM為邊的正方形?若存在,請(qǐng)直接寫出點(diǎn)P的橫坐標(biāo);若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線y=﹣x+3與x軸交于點(diǎn)A,與y軸交于點(diǎn)B.拋物線y=﹣x2+bx+c經(jīng)過A、B兩點(diǎn),與x軸的另一個(gè)交點(diǎn)為C.
(1)求拋物線的解析式;
(2)點(diǎn)P是第一象限拋物線上的點(diǎn),連接OP交直線AB于點(diǎn)Q.設(shè)點(diǎn)P的橫坐標(biāo)為m,PQ與OQ的比值為y,求y與m的關(guān)系式,并求出PQ與OQ的比值的最大值;
(3)點(diǎn)D是拋物線對(duì)稱軸上的一動(dòng)點(diǎn),連接OD、CD,設(shè)△ODC外接圓的圓心為M,當(dāng)sin∠ODC的值最大時(shí),求點(diǎn)M的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知二次函數(shù)y=ax2+bx+4的圖象與x軸交于點(diǎn)A(4,0)和點(diǎn)D(-1,0),與y軸交于點(diǎn)C,過點(diǎn)C作BC平行于x軸交拋物線于點(diǎn)B,連接AC
(1)求這個(gè)二次函數(shù)的表達(dá)式;
(2)點(diǎn)M從點(diǎn)O出發(fā)以每秒2個(gè)單位長度的速度向點(diǎn)A運(yùn)動(dòng);點(diǎn)N從點(diǎn)B同時(shí)出發(fā),以每秒1個(gè)單位長度的速度向點(diǎn)C運(yùn)動(dòng),其中一個(gè)動(dòng)點(diǎn)到達(dá)終點(diǎn)時(shí),另一個(gè)動(dòng)點(diǎn)也隨之停動(dòng),過點(diǎn)N作NQ垂直于BC交AC于點(diǎn)Q,連結(jié)MQ
①求△AQM的面積S與運(yùn)動(dòng)時(shí)間t之間的函數(shù)關(guān)系式,寫出自變量的取值范圍;當(dāng)t為何值時(shí),S有最大值,并求出S的最大值;
②是否存在點(diǎn)M,使得△AQM為直角三角形?若存在,求出點(diǎn)M的坐標(biāo);若不存在,說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】操作:將一把三角尺放在邊長為1的正方形ABCD上,并使它的直角頂點(diǎn)P在對(duì)角線AC上滑動(dòng),直角的一邊始終經(jīng)過點(diǎn)B,另一邊與射線DC相交于點(diǎn)Q,設(shè)A、P兩點(diǎn)間的距離為x.
探究:
(1)當(dāng)點(diǎn)Q在邊CD上時(shí),線段PQ與線段PB之間有怎樣的大小關(guān)系?試證明你觀察到的結(jié)論;
(2)當(dāng)點(diǎn)Q在邊CD上時(shí),設(shè)四邊形PBCQ的面積為y,求y與x之間的函數(shù)關(guān)系式,并寫出x的取值范圍;(3)當(dāng)點(diǎn)P在線段AC上滑動(dòng)時(shí),△PCQ是否能成為等腰三角形?如果可能,指出所有能使△PCQ成為等腰三角形的點(diǎn)Q的位置,并求出相應(yīng)x的值;如果不可能,試說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將Rt△ABC繞直角頂點(diǎn)A,沿順時(shí)針方向旋轉(zhuǎn)后得到Rt△AB1C1,當(dāng)點(diǎn)B1恰好落在斜邊BC的中點(diǎn)時(shí),則∠B1AC=( )
A.25°B.30°C.40°D.60°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】同時(shí)拋擲兩枚質(zhì)地均勻的正四面體骰子,骰子各個(gè)面的點(diǎn)數(shù)分別是1至4的整數(shù),把這兩枚骰子向下的面的點(diǎn)數(shù)記為(a,b),其中第一枚骰子的點(diǎn)數(shù)記為a,第二枚骰子的點(diǎn)數(shù)記為b.
(1)用列舉法或樹狀圖法求(a,b)的結(jié)果有多少種?
(2)求方程x2+bx+a=0有實(shí)數(shù)解的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xoy中,函數(shù)的圖象與一次函數(shù)y=kx-k的圖象的交點(diǎn)為A(m,2).
(1)求一次函數(shù)的解析式;
(2)設(shè)一次函數(shù)y=kx-k的圖象與y軸交于點(diǎn)B,若P是x軸上一點(diǎn), 且滿足△PAB的面積是4,
直接寫出點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,菱形ABCD的邊長為3,∠BAD=60°,點(diǎn)E、F在對(duì)角線AC上(點(diǎn)E在點(diǎn)F的左側(cè)),且EF=1,則DE+BF最小值為_____
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com