【題目】如圖,等邊ABC 繞點 B 逆時針旋轉(zhuǎn) 30°, C 轉(zhuǎn)到 C′的位置,BC′ AC 交于點 D,則 的值為(

A. 2 B. 2﹣ C. ﹣2 D. ﹣3

【答案】B

【解析】

設(shè)等邊三角形的邊長為a,利用旋轉(zhuǎn)的性質(zhì)得∠CBC′=30°,BC=BC′=a,再利用等邊三角形的性質(zhì)得∠ABC=60°,所以BD平分∠ABC,根據(jù)等邊三角形的性質(zhì)得到CD=AD=a,BD=a,則C′D=BC′-BD=a,然后計算即可.

∵等邊ABC繞點B逆時針旋轉(zhuǎn)30°,

∴∠CBC′=30°,BC=BC′=a,

∵△ABC為等邊三角形,

∴∠ABC=60°,

BD平分∠ABC,

BDAC,

CD=AD=a,BD=CD=a,

C′D=BC′-BD=a-a=a

=

故選B.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,四邊形AOBC是矩形,點O(0,0),點A(5,0),點B(0,3),以點A為中心,順時針旋轉(zhuǎn)矩形AOBC,得到矩形ADEF,點O、B、C的對應(yīng)點分別為D、E、F,且點D恰好落在BC邊上.

(1)在原圖上畫出旋轉(zhuǎn)后的矩形;

(2)求此時點D的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,已知在△ABC中,∠B=90°,OAB上一點,以O為圓心,OB為半徑的圓與AB交于點E,與AC切于點D.

(1)求證:DEOC;

(2)AD=2,DC=3,且AD2=AEAB,求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC的三邊分別切⊙OD,E,F(xiàn).

(1)若∠A=40°,求∠DEF的度數(shù);

(2)AB=AC=13,BC=10,求⊙O的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形 ABCD 中,AB=8,BC=6,將矩形 ABCD 繞點 A 逆時針旋轉(zhuǎn)得到矩形 AEFG,AE,F(xiàn)G 分別交射線CD 于點 PH,連結(jié) AH,若 P CH 的中點,則APH 的周長為(

A. 15 B. 18 C. 20 D. 24

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,為等邊三角形,,相交于點,于點,

(1)求證:;

(2)求的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面內(nèi),菱形 ABCD 的對角線相交于點 O,點 O 又是菱形B1A1OC1的一個頂點,菱形 ABCD菱形 B1A1OC1,AB=BD=10.菱形B1A1OC1 繞點 O 轉(zhuǎn)動,求兩個菱形重疊部分面積的取值范圍,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一次函數(shù)的圖象經(jīng)過點A2,4)和B(﹣1,﹣5)兩點.

1)求出該一次函數(shù)的表達(dá)式;

2)畫出該一次函數(shù)的圖象;

3)判斷(﹣5,﹣4)是否在這個函數(shù)的圖象上?

4)求出該函數(shù)圖象與坐標(biāo)軸圍成的三角形面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】標(biāo)有 6 個數(shù)字的立方體的表面展開圖如圖所示,擲這個立方體一次,記朝上一面的數(shù)為 x,朝下一面的數(shù)字為 y,得到平面直角坐標(biāo)中的一個點(x,y),小敏拋擲一次立方體,則所得的點落在以坐標(biāo)系原點為圓心,3 為半徑的圓內(nèi)的概率為_____

查看答案和解析>>

同步練習(xí)冊答案