精英家教網 > 初中數學 > 題目詳情

【題目】當你去看電影的時候,你想坐得離屏幕近一些,可是又不想為了看屏幕邊緣的鏡頭不停地轉動眼睛.如圖所示,點A、B分別為屏幕邊緣兩點,若你在P點,則視角為APB.如果你覺得電影院內P點是觀看的最佳位置,可是已經有人坐在那了,那么你會找到一個位置Q,使得在Q、P兩點有相同的視角嗎?請在圖中畫出來(保留畫圖痕跡,不寫畫法).

【答案】詳見解析.

【解析】

AB,AP的中垂線,找到交點O,然后以O為圓心,OP長為半徑做三角形ABP的外接圓,圓上每一點與A,B的連線所成的角都與∠APB相等,找到一個和P點同側的Q點連接AQ,BQ即可.

AB,AP的中垂線,交點為O,以O為圓心,OP長為半徑做三角形ABP的外接圓,

在圓上P點同側找一點Q,連接AQ,BQ,則點Q即可所求點.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】已知:△ABC在直角坐標平面內,三個頂點的坐標分別為A(0,3)、B(3,4)、C(2,2)(正方形網格中每個小正方形的邊長是一個單位長度).

(1)畫出△ABC向下平移4個單位長度得到的△A1B1C1,點C1的坐標是   ;

(2)以點B為位似中心,在網格內畫出△A2B2C2,使△A2B2C2與△ABC位似,且位似比為2:1,點C2的坐標是   

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知函數y=ax2+bx+c(a≠0)的圖象如圖,下列5個結論,其中正確的結論有( 。

①abc<0

②3a+c>0

③4a+2b+c<0

④2a+b=0

⑤b2>4ac

A. 2 B. 3 C. 4 D. 5

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在△ABC中,ADBCAD2BDCD

(1)求證:∠BAC=90°;

(2)若BD=2,AC,求CD的長.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】觀察下表:

則一元二次方程x2-2x-2=0在精確到0.1時一個近似根是______,利用拋物線的對稱性,可推知該方程的另一個近似根是_______

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】拋物線上部分點的橫坐標,縱坐標的對應值如下表:

小聰觀察上表,得出下面結論:拋物線與軸的一個交點為函數的最大值為;③拋物線的對稱軸是;④在對稱軸左側,增大而增大.其中正確有(

A. 0 B. 1 C. 2 D. 3

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖所示,某大學的樓門是一拋物線形水泥建筑物,大門的地面寬度為,兩側距離地面高處各有一個掛校名橫匾用的鐵環(huán),兩鐵環(huán)的水平距離為,則校門的高約為(精確到,水泥建筑物的厚度忽略不計)( )

A. 9.2m B. 9.1m C. 9.0m D. 8.9m

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知MNEFBC,點A、D為直線MN上的兩動點,ADa,BCbAEEDmn;

(1)當點AD重合,即a=0(如圖1),試求EF.(用含m,n,b的代數式表示)

(2)請直接應用(1)的結論解決下面問題:當A、D不重合,即a≠0,

如圖2這種情況時,試求EF.(用含ab,m,n的代數式表示)

  1

   2

   3

如圖3這種情況時,試猜想EFa、b之間有何種數量關系?并證明你的猜想.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知二次函數y=ax2+bx+c的圖象如圖所示,則下列結論:①ac>0;②a﹣b+c<0;③當x<0時,y<0;④方程ax2+bx+c=0(a≠0)有兩個大于﹣1的實數根.其中正確的結論有( 。

A. ①③ B. ②③ C. ①④ D. ②④

查看答案和解析>>

同步練習冊答案