【題目】如圖,在△ABC中,AB=4,AC=3,BC=5,DE是BC的垂直平分線,DE分別交BC、AB于點(diǎn)D、E.
(1)求證:△ABC為直角三角形.
(2)求AE的長(zhǎng).
【答案】(1)見(jiàn)解析;(2) AE的長(zhǎng)是.
【解析】
(1)利用勾股定理逆定理:如果三角形的三邊長(zhǎng)a,b,c滿足a2+b2=c2,那么這個(gè)三角形就是直角三角形可得△ABC是直角三角形;
(2)根據(jù)線段垂直平分線的性質(zhì)可得BE=CE,設(shè)AE=x,則EC=4-x,根據(jù)勾股定理可得x2+32=(4-x)2,再解即可.
(1)證明:∵△ABC中,AB=4,AC=3,BC=5,
又∵42+32=52,
即AB2+AC2=BC2,
∴△ABC是直角三角形;
(2)證明:連接CE.
∵DE是BC的垂直平分線,
∴EC=EB,
設(shè)AE=x,則EC=4-x.
∴x2+32=(4-x)2.
解之得x=,即AE的長(zhǎng)是.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四邊形ABCD中,AD∥BC,E為CD的中點(diǎn),連接AE、BE,BE⊥AE,延長(zhǎng)AE交BC的延長(zhǎng)線于點(diǎn)F. 已知AD=2cm,BC=5cm.
(1)求證:FC=AD;
(2)求AB的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:在平面直角坐標(biāo)系xOy中,點(diǎn)A、B的坐標(biāo)分別為(3,0),(0,4),點(diǎn)C(t,0)是x軸上一動(dòng)點(diǎn),點(diǎn)M是BC的中點(diǎn).
(1)當(dāng)點(diǎn)C和點(diǎn)A重合時(shí),求OM的長(zhǎng);
(2)若S△ACB=10,則t的值為 ;
(3)在(2)的條件下,直線AM交y軸于點(diǎn)N,求△ABN的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC中,AD是高,AE、BF是角平分線,它們相交于點(diǎn)O,∠CAB=500,∠C=600,求∠DAE和∠BOA的度數(shù)。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在矩形ABCD中,AB=,AD=3,點(diǎn)E從點(diǎn)B出發(fā),沿BC邊運(yùn)動(dòng)到點(diǎn)C,連結(jié)DE,點(diǎn)E作DE的垂線交AB于點(diǎn)F.在點(diǎn)E的運(yùn)動(dòng)過(guò)程中,以EF為邊,在EF上方作等邊△EFG,則邊EG的中點(diǎn)H所經(jīng)過(guò)的路徑長(zhǎng)是( 。
A. 2 B. 3 C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)如圖1,△ABC中,作∠ABC、∠ACB的平分線相交于點(diǎn)O,過(guò)點(diǎn)O作EF∥BC分別交AB、AC于E、F.
①求證:OE=BE.
②若△ABC的周長(zhǎng)是25,BC=9,試求出△AEF的周長(zhǎng).
(2)如圖2,若∠ABC的平分線與∠ACB外角∠ACD的平分線相交于點(diǎn)P,連接AP,若∠BAC=80°,∠PAC的度數(shù)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】、兩地相距,甲、乙兩人沿同一條路從地到地.,分別表示甲、乙兩人離開(kāi)地的距離與時(shí)間之間的關(guān)系.
(1)乙先出發(fā)________后,甲才出發(fā);直接寫出,的表達(dá)式.
(2)甲到達(dá)地時(shí),乙還需幾小時(shí)到達(dá)地?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,∠C=90°,點(diǎn)P在AC上運(yùn)動(dòng),點(diǎn)D在AB上,PD始終保持與PA相等,BD的垂直平分線交BC于點(diǎn)E,交BD于點(diǎn)F,連接DE.
(1)判斷DE與DP的位置關(guān)系,并說(shuō)明理由;
(2)若AC=6,BC=8,PA=2,求線段DE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,一次函數(shù)y=kx+b分別交y軸、x軸于C、D兩點(diǎn),與反比例函數(shù)y=(x>0)的圖象交于A(m,8),B(4,n)兩點(diǎn).
(1)求一次函數(shù)的解析式;
(2)根據(jù)圖象直接寫出kx+b﹣<0的x的取值范圍;
(3)求△AOB的面積.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com