坐標(biāo)平面內(nèi)有4個(gè)點(diǎn)A(1,2),B(-2,1),C(0,-1),D(2,0),順次連接A,B,C,D,求四邊形ABCD的面積.

答案:
解析:

  解:如圖所示,分別過(guò)點(diǎn)B,D作x軸的垂線,過(guò)點(diǎn)A,C作y軸的垂線,得到長(zhǎng)方形EFGH.

  則四邊形ABCD的面積=長(zhǎng)方形EFGH的面積-三角形EBA的面積-三角形HAD的面積-三角形GDC的面積-三角形FCB的面積,即四邊形ABCD的面積=3×4-×1×3-×1×2-×1×2-×2×2=6.5.


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,坐標(biāo)平面內(nèi)有兩個(gè)點(diǎn)A和B其中點(diǎn)A的坐標(biāo)為(x1,y1),點(diǎn)B的坐標(biāo)為(x2,y2),求AB的中點(diǎn)C的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

坐標(biāo)平面內(nèi)有4個(gè)點(diǎn)為A(0,2),B(-1,0),C(1,-1),D(3,1).
(1)建立坐標(biāo)系,描出這4個(gè)點(diǎn);
(2)順次連接A,B,C,D,組成四邊形ABCD,求四邊形ABCD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

探究:如圖,四邊形ABCD中,AB∥CD,E為AD的中點(diǎn),若EF∥AB.求證:BF=CF
精英家教網(wǎng)
知識(shí)應(yīng)用:如圖,坐標(biāo)平面內(nèi)有兩個(gè)點(diǎn)A和B其中點(diǎn)A的坐標(biāo)為(x1,y1),點(diǎn)B的坐標(biāo)為(x2,y2),求AB的中點(diǎn)C的坐標(biāo).
精英家教網(wǎng)
知識(shí)拓展:在上圖中,點(diǎn)A的坐標(biāo)為(4,5),點(diǎn)B的坐標(biāo)為(-6,-1),分別在x軸和y軸上找一點(diǎn)C和D,使得以A、B、C、D為頂點(diǎn)的四邊形是平行四邊形,求出點(diǎn)C和點(diǎn)D的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

坐標(biāo)平面內(nèi)有4個(gè)點(diǎn)A(1,2),B(0,2),C(0,-1),D(2,0),
(1)畫(huà)出直角坐標(biāo)系,描出四個(gè)點(diǎn),并順次連接A、B、C、D、A,得到四邊形ABCD;
(2)求四邊形ABCD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2012年人教版七年級(jí)下第六章第二節(jié)用坐標(biāo)表示平移(1)練習(xí)卷(解析版) 題型:解答題

坐標(biāo)平面內(nèi)有4個(gè)點(diǎn)A(0,2),B(-1,0),C(1,-1),D(3,1).

­    (1)建立坐標(biāo)系,描出這4個(gè)點(diǎn);

­    (2)順次連接A,B,C,D,組成四邊形ABCD,求四邊形ABCD的面積.

­

查看答案和解析>>

同步練習(xí)冊(cè)答案