勾股定理神秘而美妙,它的證法多樣,其巧妙各有不同,其中的“面積法”給了小聰以靈感。他驚喜地發(fā)現(xiàn):當(dāng)兩個(gè)全等的直角三角形如圖1或圖2擺放時(shí),都可以用“面積法”來證明。下面是小聰利用圖1證明勾股定理的過程:
將兩個(gè)全等的直角三角形按圖1所示擺放,其中∠DAB=90°,求證:。
證明:連結(jié)DB,過點(diǎn)D作BC邊上的高DF,
則DF=EC=,
∵ ,
又∵,
∴ ,
∴
請(qǐng)參照上述證法,利用圖2完成下面的證明:
將兩個(gè)全等的直角三角形按圖2所示擺放,其中∠DAB=90°。
求證:。
證明:連結(jié)
∵
又∵
∴
∴ 。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
如圖,是我們學(xué)過的用直尺和三角尺畫平行線的方法示意圖,畫圖的原理是:
A.同位角相等,兩直線平行
B.內(nèi)錯(cuò)角相等,兩直線平行
C.兩直線平行,同位角相等
D兩直線平行,內(nèi)錯(cuò)角相等.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,如果將△ABC的頂點(diǎn)A先向下平移3格,再向左平移1格到達(dá)點(diǎn),連接,則線段與線段的關(guān)系是
A.垂直 B.相等 C.平分 D.平分且垂直
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com