分析 (1)為了讓直線穿越更多的小正方形,我們不妨假設直線L右上方至左下方穿過一個4×4的正方形,我們從兩個方向來分析直線l穿過4×4正方形的情況:從上下來看,這條直線由下至上最多可穿過上下平行的3條線段;從左右來看,這條直線最多可穿過左右平行的5條線段;這樣直線L最多可穿過4×4的大正方形中的8條線段,從而直線L上會產生8個交點,這8個交點之間的7條線段,這樣就不難得到答案.
(2)應用規(guī)律2n-1得到答案.
(3)應用規(guī)律2n-1得到答案.
(4)應用規(guī)律2n-1得到答案.
(5)我們不妨假設直線L右上方至左下方穿過一個2×3的正方形,我們從兩個方向來分析直線l穿過2×3正方形的情況:從上下來看,這條直線由下至上最多可穿過上下平行的1條線段;從左右來看,這條直線最多可穿過左右平行的4條線段;這樣直線L最多可穿過2×3的大正方形中的5條線段,從而直線L上會產生5個交點,這5個交點之間的4條線段,每條會落在一個不同的正方形內,因此直線L最多能經過4個小正方形.
(6)不妨假設直線L右上方至左下方穿過一個3×4的正方形,我們從兩個方向來分析直線l穿過3×4正方形的情況:從上下來看,這條直線由下至上最多可穿過上下平行的2條線段;從左右來看,這條直線最多可穿過左右平行的5條線段;這樣直線L最多可穿過4×4的大正方形中的7條線段,從而直線L上會產生7個交點,這7個交點之間的6條線段,每條會落在一個不同的正方形內,因此直線L最多能經過6個小正方形.
(7)不妨假設直線L右上方至左下方穿過一個m×n的正方形,我們從兩個方向來分析直線l穿過m×n正方形的情況:從上下來看,這條直線由下至上最多可穿過上下平行的(m-1)條線段;從左右來看,這條直線最多可穿過左右平行的(n+1)條線段;這樣直線L最多可穿過4×4的大正方形中的(m+n)條線段,從而直線L上會產生(m+n)個交點,這m+n個交點之間的(m+n-1)條線段,每條會落在一個不同的正方形內,因此直線L最多能經過(m+n-1)個小正方形.
(8)用類似的方法得到規(guī)律:3n-2.即可解決.
(9)根據規(guī)律3n-2得到答案.
解答 解:(1)再讓我們來考慮4×4正方形的情況(如圖4):為了讓直線穿越更多的小正方形,我們不妨假設直線L右上方至左下方穿過一個4×4的正方形,我們從兩個方向來分析直線l穿過4×4正方形的情況:從上下來看,這條直線由下至上最多可穿過上下平行的3條線段;從左右來看,這條直線最多可穿過左右平行的5條線段;這樣直線L最多可穿過4×4的大正方形中的8條線段,從而直線L上會產生8個交點,這8個交點之間的7條線段,每條會落在一個不同的正方形內,因此直線L最多能經過7個小正方形.
故答案為7
(2)我們發(fā)現(xiàn)直線穿越1×1正方形時最多經過1個正方形,直線穿越2×2正方形時最多經過3個正方形,直線穿越3×3正方形時最多經過5個正方形,
直線穿越4×4正方形時最多經過7個正方形,…直線穿越n×n正方形時最多經過2n-1個正方形.
∴直線穿越10×10正方形時最多經過19個正方形.
故答案為19.
(3)由(2)可知,有2×16-1=31個正方形,
故答案為31.
(4)由(2)可知有2n-1個正方形.
故答案為2n-1.
(5)為了讓直線穿越更多的小正方形,我們不妨假設直線L右上方至左下方穿過一個2×3的正方形,我們從兩個方向來分析直線l穿過2×3正方形的情況:從上下來看,這條直線由下至上最多可穿過上下平行的1條線段;從左右來看,這條直線最多可穿過左右平行的4條線段;這樣直線L最多可穿過2×3的大正方形中的5條線段,從而直線L上會產生5個交點,這5個交點之間的4條線段,每條會落在一個不同的正方形內,因此直線L最多能經過4個小正方形,
故答案為4.
(6)為了讓直線穿越更多的小正方形,我們不妨假設直線L右上方至左下方穿過一個3×4的正方形,我們從兩個方向來分析直線l穿過3×4正方形的情況:從上下來看,這條直線由下至上最多可穿過上下平行的2條線段;從左右來看,這條直線最多可穿過左右平行的5條線段;這樣直線L最多可穿過4×4的大正方形中的7條線段,從而直線L上會產生7個交點,這7個交點之間的6條線段,每條會落在一個不同的正方形內,因此直線L最多能經過6個小正方形.
故答案為6.
(7)為了讓直線穿越更多的小正方形,我們不妨假設直線L右上方至左下方穿過一個m×n的正方形,我們從兩個方向來分析直線l穿過m×n正方形的情況:從上下來看,這條直線由下至上最多可穿過上下平行的(m-1)條線段;從左右來看,這條直線最多可穿過左右平行的(n+1)條線段;這樣直線L最多可穿過4×4的大正方形中的(m+n)條線段,從而直線L上會產生(m+n)個交點,這m+n個交點之間的(m+n-1)條線段,每條會落在一個不同的正方形內,因此直線L最多能經過(m+n-1)個小正方形,
故答案為(m+n-1).
(8)用類似的方法可以得到:用一條直線穿過1×1×1正方體的話,最多可以穿過1個小正方體,用一條直線穿過,2×2×2正方體的話,最多可以穿過4個小正方體,用一條直線穿過,3×3×3正方體的話,最多可以穿過7個小正方體,用一條直線穿過4×4×4正方體的話,最多可以穿過10個小正方體,…用一條直線穿過,n×n×n正方體的話,最多可以穿過(3n-2)個小正方體.
故答案為4.
(9)由(8)可知有(3n-2)個正方形,
故答案為(3n-2).
點評 本題考查線線相交得點、以及正方形、立方體的有關知識,是個探究題目,學會從簡單到復雜的推理方法,找到規(guī)律即可解決問題,本題難度比較大,從穿過的線段入手,找到問題的突破口,這個方法值得在以后的學習中應用.
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com