【題目】如圖,已知BDAB于點(diǎn)BACAB于點(diǎn)A,且BD3AC2,ABm,在線段AB上找一點(diǎn)E,使△BDE與△ACE相似,若這樣的點(diǎn)E有且只有兩個(gè),則m的值是______

【答案】52

【解析】

當(dāng)∠ACE=∠BDE時(shí),△ACE∽△BDE,得出,AEBE①,當(dāng)ACE=∠BED時(shí),△ACE∽△BED,得出,即AE×BEAC×BD6②,由①②得出BE26,解得BE3,AE2,得出m5;當(dāng)AE2時(shí),BE3,兩個(gè)三角形相似;當(dāng)AE3時(shí),BE2,兩個(gè)三角形全等,符合題目要求;設(shè)AEx,則BEmx,得出x32:(mx),整理得x2mx+60,方程有唯一解時(shí),△=m2240,解得m,當(dāng)m時(shí),AEBE23時(shí),兩個(gè)三角形相似;AEBE時(shí),兩個(gè)三角形相似;同樣是兩個(gè)點(diǎn)可以滿足要求;即可得出答案.

解:∵BDAB于點(diǎn)B,ACAB

∴∠A=∠B90°,

當(dāng)∠ACE=∠BDE時(shí),△ACE∽△BDE,

,

AEBE①,

當(dāng)ACE=∠BED時(shí),△ACE∽△BED

,即AE×BEAC×BD2×36②,

由①②得:BE26,

解得:BE3

AE2,

ABAE+BE5,即m5;

當(dāng)AE2時(shí),BE3,兩個(gè)三角形相似;

當(dāng)AE3時(shí),BE2,兩個(gè)三角形全等,符合題目要求;

設(shè)AEx,則BEmx,

x32:(mx),

整理得:x2mx+60,

方程有唯一解時(shí),△=m2240,

解得:m±(負(fù)值舍去),

m;

當(dāng)m時(shí),

AEBE23時(shí),兩個(gè)三角形相似;

AEBE時(shí),兩個(gè)三角形相似;同樣是兩個(gè)點(diǎn)可以滿足要求;

綜上所述,△BDE與△ACE相似,若這樣的點(diǎn)E有且只有兩個(gè),則m的值是5;

故答案為:5

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AB⊙O的直徑,弦CDAB于點(diǎn)E,點(diǎn)G為弧BC上一動(dòng)點(diǎn),CGAB的延長(zhǎng)線交于點(diǎn)F,連接OD

1)判定∠AOD與∠CGD的大小關(guān)系為   ,并求證:GB平分∠DGF

2)在G點(diǎn)運(yùn)動(dòng)過(guò)程中,當(dāng)GDGF時(shí),DE4,BF,求⊙O的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,∠MON=60°,OF平分∠MON,點(diǎn)A在射線OM上, P,Q是射線ON上的兩動(dòng)點(diǎn),點(diǎn)P在點(diǎn)Q的左側(cè),且PQ=OA,作線段OQ的垂直平分線,分別交OM,OF,ON于點(diǎn)D,BC,連接AB,PB

1)依題意補(bǔ)全圖形;

2)判斷線段 AB,PB之間的數(shù)量關(guān)系,并證明;

3)連接AP,設(shè),當(dāng)PQ兩點(diǎn)都在射線ON上移動(dòng)時(shí),是否存在最小值?若存在,請(qǐng)直接寫(xiě)出的最小值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】端午節(jié)放假期間,小明和小華準(zhǔn)備到宜賓的蜀南竹海(記為A)、興文石海(記為B)、夕佳山民居(記為C)、李莊古鎮(zhèn)(記為D)的一個(gè)景點(diǎn)去游玩,他們各自在這四個(gè)景點(diǎn)中任選一個(gè),每個(gè)景點(diǎn)都被選中的可能性相同.

(1)小明選擇去蜀南竹海旅游的概率為

(2)用樹(shù)狀圖或列表的方法求小明和小華都選擇去興文石海旅游的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為“節(jié)能減排,保護(hù)環(huán)境”,某村計(jì)劃建造AB兩種型號(hào)的沼氣池共20個(gè),以解決所有農(nóng)戶的燃料問(wèn)題.據(jù)市場(chǎng)調(diào)查:建造AB兩種型號(hào)的沼氣池各1個(gè),共需費(fèi)用5萬(wàn)元;建造A型號(hào)的沼氣池3個(gè),B種型號(hào)的沼氣池4個(gè),共需費(fèi)用18萬(wàn)元.

1)求建造A、B兩種型號(hào)的沼氣池造價(jià)分別是多少?

2)設(shè)建造A型沼氣池x個(gè),總費(fèi)用為y萬(wàn)元,求yx之間的函數(shù)關(guān)系式;若要使投入總費(fèi)用不超過(guò)52萬(wàn)元,至少要建造A型沼氣池多少個(gè)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABC中,D、E分別是邊AC、BC的中點(diǎn),FBC延長(zhǎng)線上一點(diǎn),∠F=B

(l)AB=1O,求FD的長(zhǎng);

(2)AC=BC.求證:CDEDFE .

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知二次函數(shù)圖象的頂點(diǎn)在原點(diǎn),對(duì)稱(chēng)軸為.直線的圖象與二次函數(shù)的圖象交于點(diǎn)和點(diǎn)(點(diǎn)在點(diǎn)的左側(cè))

1)求的值及直線解析式;

2)若過(guò)點(diǎn)的直線平行于直線且直線與二次函數(shù)圖象只有一個(gè)交點(diǎn),求交點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,正方形OABC的邊OA,OC在坐標(biāo)軸上,點(diǎn)B的坐標(biāo)為(44).點(diǎn)P從點(diǎn)A出發(fā),以每秒1個(gè)單位長(zhǎng)度的速度沿x軸向點(diǎn)O運(yùn)動(dòng);點(diǎn)Q從點(diǎn)O同時(shí)出發(fā),以相同的速度沿x軸的正方向運(yùn)動(dòng),規(guī)定點(diǎn)P到達(dá)點(diǎn)O時(shí),點(diǎn)Q也停止運(yùn)動(dòng).連接BP,過(guò)P點(diǎn)作BP的垂線,與過(guò)點(diǎn)Q平行于y軸的直線l相交于點(diǎn)D.BDy軸交于點(diǎn)E,連接PE.設(shè)點(diǎn)P運(yùn)動(dòng)的時(shí)間為t(s)

(1)PBD的度數(shù)為 ,點(diǎn)D的坐標(biāo)為 (t表示)

(2)當(dāng)t為何值時(shí),PBE為等腰三角形?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】東坡商貿(mào)公司購(gòu)進(jìn)某種水果成本為20/,經(jīng)過(guò)市場(chǎng)調(diào)研發(fā)現(xiàn),這種水果在未來(lái)48天的銷(xiāo)售單價(jià)(元/)與時(shí)間(天)之間的函數(shù)關(guān)系式,為整數(shù),且其日銷(xiāo)售量()與時(shí)間(天)的關(guān)系如下表:

時(shí)間(天)

1

3

6

10

20

日銷(xiāo)售量

118

114

108

100

80

1)已知之間的變化符合一次函數(shù)關(guān)系,試求在第30天的日銷(xiāo)售量;

2)哪一天的銷(xiāo)售利潤(rùn)最大?最大日銷(xiāo)售利潤(rùn)為多少?

查看答案和解析>>

同步練習(xí)冊(cè)答案