【題目】在平面直角坐標(biāo)系中,為坐標(biāo)原點(diǎn),拋物線分別交軸正半軸于點(diǎn),交軸負(fù)半軸于點(diǎn),與軸負(fù)半軸交于點(diǎn),且.
(1)如圖1,求的值;
(2)如圖,是第一象限拋物線上的點(diǎn),連,過(guò)點(diǎn)作軸,交的延長(zhǎng)線于點(diǎn),連接交于點(diǎn),若,求點(diǎn)的坐標(biāo)以及的值;
(3)如圖3,在(2)的條件下,連接,是第一象限拋物線上的點(diǎn)(點(diǎn)與點(diǎn)不重合),過(guò)點(diǎn)作的垂線,交軸于點(diǎn),點(diǎn)在軸上(點(diǎn)在點(diǎn)的左側(cè)),,點(diǎn)在直線上,連接、.若,,求點(diǎn)的坐標(biāo).
【答案】(1)1;(2);;(3)點(diǎn)
【解析】
(1)先根據(jù)拋物線求出對(duì)稱(chēng)軸方程為:,再根據(jù)求出A、B的坐標(biāo),用待定系數(shù)法把A點(diǎn)坐標(biāo)代入拋物線即可求出a的值;
(2)利用得到,先算出直線的解析式為,再求解AD直線的解析式,把AD直線的解析式與拋物線聯(lián)立,即可求出D點(diǎn)坐標(biāo),進(jìn)而可以得到的值;
(3) 作于,于,于交于點(diǎn),與交于點(diǎn),與交于點(diǎn).先證明,根據(jù)全等三角形的性質(zhì)得到再,根據(jù)EF=13,求解即可得到答案;
解:(1)如下圖中:
對(duì)稱(chēng)軸,
,
把代入拋物線解析式,得到,
(2)如下圖:
,且
直線的解析式為
設(shè)直線的解析式為,把點(diǎn)代入得到,
直線的解析式為
由,
解得(舍去)
;
∵OA=1,
∴;
(3)如圖下,作于,于,于交于點(diǎn),與交于點(diǎn),與交于點(diǎn).
,
,
,
,
,
設(shè)點(diǎn),
,
或(舍去),
點(diǎn);
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,拋物線與鈾交于,與軸交于拋物線的頂點(diǎn)為直線過(guò)交軸于.
(1)寫(xiě)出的坐標(biāo)和直線的解析式;
(2)是線段上的動(dòng)點(diǎn)(不與重合),軸于設(shè)四邊形的面積為,求與之間的兩數(shù)關(guān)系式,并求的最大值;
(3)點(diǎn)在軸的正半軸上運(yùn)動(dòng),過(guò)作軸的平行線,交直線于交拋物線于連接,將沿翻轉(zhuǎn),的對(duì)應(yīng)點(diǎn)為.在圖2中探究:是否存在點(diǎn);使得恰好落在軸?若存在,請(qǐng)求出的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:菱形ABCD,AB=4m,∠B=60°,點(diǎn)P、Q分別從點(diǎn)B、C同時(shí)出發(fā),沿線段BC、CD以1m/s的速度向終點(diǎn)C、D運(yùn)動(dòng),運(yùn)動(dòng)時(shí)間為t秒.
(1)如圖1,連接AP、AQ、PQ,試判斷△APQ的形狀,并說(shuō)明理由
(2)如圖2,當(dāng)t=1.5秒時(shí),連接AC,與PQ相交于點(diǎn)K.求AK的長(zhǎng).
(3)如圖3,連接AC交BD于點(diǎn)O,當(dāng)P、Q分別運(yùn)動(dòng)到點(diǎn)C、D時(shí),將∠APQ沿射線CA方向平移,使點(diǎn)P與點(diǎn)O重合,然后以點(diǎn)O為旋轉(zhuǎn)中心將∠APQ旋轉(zhuǎn)一定的角度,使角的兩邊分別于CD、AD交于S、K點(diǎn),再以OS為一邊在∠SOC內(nèi)作∠SOT,使∠SOT=∠BDC,OT邊交BC的延長(zhǎng)線于點(diǎn)T,若BT=4.8,求AK的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】本題滿分11分.
如圖,已知直線y=-x +3分別與x、y軸交于點(diǎn)A和B.
(1)求點(diǎn)A、B的坐標(biāo);
(2)求原點(diǎn)O到直線l的距離;
(3)若圓M的半徑為2,圓心M在y軸上,當(dāng)圓M與直線l相切時(shí),求點(diǎn)M的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在矩形中,是邊的中點(diǎn),,垂足為點(diǎn),連接,有下列五個(gè)結(jié)論:①;②;③;④;⑤.其中正確結(jié)論的個(gè)數(shù)是( )
A.1B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)O為坐標(biāo)原點(diǎn),拋物線的頂點(diǎn)是A(1,3),將OA繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)后得到OB,點(diǎn)B恰好在拋物線上,OB與拋物線的對(duì)稱(chēng)軸交于點(diǎn)C.
(1)求拋物線的解析式;
(2)P是線段AC上一動(dòng)點(diǎn),且不與點(diǎn)A,C重合,過(guò)點(diǎn)P作平行于x軸的直線,與的邊分別交于M,N兩點(diǎn),將以直線MN為對(duì)稱(chēng)軸翻折,得到.
設(shè)點(diǎn)P的縱坐標(biāo)為m.
①當(dāng)在內(nèi)部時(shí),求m的取值范圍;
②是否存在點(diǎn)P,使,若存在,求出滿足m的值;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,等腰Rt△ABC與等腰Rt△CDE關(guān)于原點(diǎn)O成位似關(guān)系,相似比為1:3,∠ACB=∠CED=90°,A、C、E是x軸正半軸上的點(diǎn),B、D是第一象限的點(diǎn),BC=2,則點(diǎn)D的坐標(biāo)是( 。
A.(9,6)B.(8,6)C.(6,9)D.(6,8)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,是的直徑,點(diǎn)在上(點(diǎn)不與,重合),直線交過(guò)點(diǎn)的切線于點(diǎn),過(guò)點(diǎn)作的切線交于點(diǎn).
(1)求證:;
(2)若,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,由兩個(gè)長(zhǎng)為2,寬為1的長(zhǎng)方形組成“7”字圖形.
(1)將一個(gè)“7”字圖形按如圖擺放在平面直角坐標(biāo)系中,記為“7”字圖形,其中頂點(diǎn)位于軸上,頂點(diǎn),位于軸上,為坐標(biāo)原點(diǎn),則的值為____.
(2)在(1)的基礎(chǔ)上,繼續(xù)擺放第二個(gè)“7”字圖形得頂點(diǎn),擺放第三個(gè)“7”字圖形得頂點(diǎn),依此類(lèi)推,…,擺放第個(gè)“7”字圖形得頂點(diǎn),…,則頂點(diǎn)的坐標(biāo)為_____.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com