精英家教網 > 初中數學 > 題目詳情
如圖,在△ABC中,∠B=36°,∠C=66°,AD是高,AE是角平分線,求∠EAD的度數.
考點:三角形內角和定理
專題:
分析:根據三角形內角和定理求出∠BAC,再根據角平分線的定義求出∠BAD,根據直角三角形兩銳角互余求出∠BAE,然后求解即可.
解答:解:∵∠B=36°,∠C=66°,
∴∠BAC=180°-∠B-∠C=180°-36°-66°=78°,
∵AD是角平分線,
∴∠BAD=
1
2
∠BAC=
1
2
×78°=39°,
∵AE是高,
∴∠BAE=90°-∠B=90°-36°=54°,
∴∠DAE=∠BAE-∠BAD=54°-39°=15°
點評:本題考查了三角形內角和定理,垂線定義,角平分線定義的應用,能熟記性質并能識圖是解此題的關鍵,題目比較典型,難度適中.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

某文具店銷售一種進價為每本10元的筆記本,為獲得高利潤,以不低于進價進行銷售,結果發(fā)現,每月銷售量y與銷售單價x之間的關系可以近似地看作一次函數:y=-5x+150,物價部門規(guī)定這種筆記本每本的銷售單價不得高于18元.
(1)當每月銷售量為70本時,獲得的利潤為多少元;
(2)該文具店這種筆記本每月獲得利潤為w元,求每月獲得的利潤w元與銷售單價x之間的函數關系式,并寫出自變量的取值范圍;
(3)當銷售單價定為多少元時,每月可獲得最大利潤,最大利潤為多少元?

查看答案和解析>>

科目:初中數學 來源: 題型:

點P為直線l外一點,點A、B、C為直線l上三點,PA=4cm、PB=5cm、PC=2cm,則點P到直線l的距離( 。
A、等于4cm
B、等于2cm
C、小于2cm
D、不大于2cm

查看答案和解析>>

科目:初中數學 來源: 題型:

已知:如圖,點B、F、C、E在同一條直線上,AB∥DE,∠A=∠D,BF=EC.求證:AC=DF.

查看答案和解析>>

科目:初中數學 來源: 題型:

x
3
=
y
4
=
z
5
,則
x-y-z
x+3y-z
的值為
 

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖,在△ABC中,點D、E、F分別是邊AB、AC、BC上的點,DE∥BC,EF∥AB,且AD:DB=3:5,那么CF:CB等于( 。
A、3:8B、3:5
C、5:8D、2:5

查看答案和解析>>

科目:初中數學 來源: 題型:

下列命題一定正確的是( 。
A、平分弦的直徑必垂直于弦
B、經過三個點一定可以作圓
C、三角形的外心到三角形三個頂點的距離都相等
D、相等的圓周角所對的弦也相等

查看答案和解析>>

科目:初中數學 來源: 題型:

在△ABC中,∠A的對邊為a,∠的對邊為b,∠C的對邊為c,∠C=90°.
(1)若a=5,b=12,則c=
 
;
(2)若b=5,c=7,則a=
 
;
(3)若a=b,c=m,則S△ABC=
 

(4)若a=b=m,則c=
 
,S△ABC=
 
;
(5)若a+b=
6
,c=2,則S△ABC=
 

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖,已知∠B=∠D,要使BE∥DF,還需補充一個條件,你認為這個條件應該是
 
.(填一個條件即可)

查看答案和解析>>

同步練習冊答案