【題目】智能手機(jī)如果安裝了一款測(cè)量軟件“SmartMeasure”后,就可以測(cè)量物高、寬度和面積等.如圖,打開(kāi)軟件后將手機(jī)攝像頭的屏幕準(zhǔn)星對(duì)準(zhǔn)腳部按鍵,再對(duì)準(zhǔn)頭部按鍵,即可測(cè)量出人體的高度.其數(shù)學(xué)原理如圖②所示,測(cè)量者AB與被測(cè)量者CD都垂直于地面BC.若手機(jī)顯示AC1mAD18m,∠CAD60°,求此時(shí)CD的高.(結(jié)果保留根號(hào))

【答案】CD的高度為米.

【解析】

過(guò)點(diǎn)DDEAC,垂足為E,利用60°的角構(gòu)造直角三角形,利用銳角三角函數(shù)分別求出DEAE,進(jìn)而求出EC,再根據(jù)勾股定理求出結(jié)果即可.

解:過(guò)點(diǎn)DDEAC,垂足為E

RtADE中,DEAD sinDAC1.8×sin60°AEAD cosDAC1.8×cos60°0.9,

ECACAE10.90.1

RtDEC中,DC,

答:CD的高度為米.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)E是正方形ABCD的邊BC延長(zhǎng)線上一點(diǎn),連接DE,過(guò)頂點(diǎn)BBFDE,垂足為F,BF交邊DC于點(diǎn)G

1)求證:DGBCDFBG;

2)連接CF,求∠CFB的大。

3)作點(diǎn)C關(guān)于直線DE的對(duì)稱點(diǎn)H,連接CH,FH.猜想線段DF,BF,CH之間的數(shù)量關(guān)系并加以證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,拋物線y=ax2+2x+cx軸交于A(﹣1,0)B(3,0)兩點(diǎn),與y軸交于點(diǎn)C,點(diǎn)D是該拋物線的頂點(diǎn).

(1)求拋物線的解析式和直線AC的解析式;

(2)請(qǐng)?jiān)?/span>y軸上找一點(diǎn)M,使BDM的周長(zhǎng)最小,求出點(diǎn)M的坐標(biāo);

(3)試探究:在拋物線上是否存在點(diǎn)P,使以點(diǎn)A,P,C為頂點(diǎn),AC為直角邊的三角形是直角三角形?若存在,請(qǐng)求出符合條件的點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】意大利著名數(shù)學(xué)家斐波那契在研究兔子繁殖問(wèn)題時(shí),發(fā)現(xiàn)有這樣一組數(shù):1,1,2,3,5,8,13,…,其中從第三個(gè)數(shù)起,每一個(gè)數(shù)都等于它前面兩個(gè)數(shù)的和現(xiàn)以這組數(shù)中的各個(gè)數(shù)作為正方形的邊長(zhǎng)值構(gòu)造正方形,再分別依次從左到右取2個(gè)、3個(gè)、4個(gè)、5個(gè)…正方形拼成如上長(zhǎng)方形,若按此規(guī)律繼續(xù)作長(zhǎng)方形,則序號(hào)為的長(zhǎng)方形周長(zhǎng)是

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,的直徑,上一點(diǎn),連接、為弧中點(diǎn),過(guò)點(diǎn),垂足為,于點(diǎn),,交的延長(zhǎng)線于點(diǎn)

1)求證:的切線;

2)若,且,求的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,某“拓展訓(xùn)練營(yíng)”的一個(gè)自行車爬坡項(xiàng)目有兩條不同路線,路線一:從CB,路線二:從DA,AB為垂直升降梯.其中BC的坡度為i=12,BC=12米,CD8米,∠D=(其中AB,CD均在同一平面內(nèi)),則垂直升降梯AB的高度約為(精確到0.1米)( )(參考數(shù)據(jù):tan36°≈0.73,cos36°≈0.81,sin36°≈0.59

A.8.6B.11.4C.13.9D.23.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平行四邊形ABCD中,AC是對(duì)角線,EAD邊上一點(diǎn),連接BEAC于點(diǎn)F,∠FAE=FEA=30°,GAB邊的中點(diǎn),連接GF

1)如圖1,若BC=,AF=2,求△AGF的面積;

2)如圖2,過(guò)點(diǎn)GGHGF,連接HABC于點(diǎn)M,連接HC,且HA=HC,連接HF,求證:MC=MH

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在下面16×8的正方形網(wǎng)格中,每個(gè)小正方形的邊長(zhǎng)為1個(gè)單位,ABC是格點(diǎn)三角形(頂點(diǎn)在網(wǎng)格交點(diǎn)處),請(qǐng)你畫出:

1ABC的中心對(duì)稱圖形,A點(diǎn)為對(duì)稱中心;

2ABC關(guān)于點(diǎn)P的位似ABC,且位似比為12

3)以A、BC、D為頂點(diǎn)的所有格點(diǎn)平行四邊形ABCD的頂點(diǎn)D

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】新知認(rèn)識(shí):在ABC中,∠A,∠B,∠C所對(duì)的邊分別用a,b,c表示,如果一個(gè)三角形的一個(gè)內(nèi)角等于另一個(gè)內(nèi)角的2倍,我們稱這樣的三角形為“倍角三角形”.

1)特殊驗(yàn)證:如圖1,在ABC中,若a,b1,c2,求證:ABC為倍角三角形;

2)模型探究:如圖2,對(duì)于任意的倍角三角形,若∠A2B,求證:a2bb+c

查看答案和解析>>

同步練習(xí)冊(cè)答案