【題目】在學(xué)校的社會實踐活動中,一批學(xué)生協(xié)助搬運初一、二兩個年級的圖書,初一年級需要搬運的圖書數(shù)量是初二年級需要搬運的圖書數(shù)量的兩倍.上午全部學(xué)生在初一年級搬運,下午一半的學(xué)生仍然留在初一年級(上下午的搬運時間相等)搬運,到放學(xué)時剛好把初一年級的圖書搬運完.下午另一半的學(xué)生去初二年級搬運圖書,到放學(xué)時還剩下一小部分未搬運,最后由三個學(xué)生再用一整天的時間剛好搬運完.如果這批學(xué)生每人每天搬運的效率是相同的,則這批學(xué)生共有人數(shù)為______.

【答案】8

【解析】

設(shè)二年級需要搬運的圖書為a本,則一年級搬運的圖書為2a本,這批學(xué)生有x人,每人每天的搬運效率為m,根據(jù)題意的等量關(guān)系建立方程組求出其解即可.

解:設(shè)二年級需要搬運的圖書為a本,則一年級搬運的圖書為2a本,這批學(xué)生有x人,每人每天的搬運效率為m,由題意得:

解得:x=8,即這批學(xué)生有8

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線與直線相交于,兩點,且拋物線經(jīng)過點

1)求拋物線的解析式.

2)點是拋物線上的一個動點(不與點重合),過點作直線軸于點,交直線于點.當(dāng)時,求點坐標(biāo);

3)如圖所示,設(shè)拋物線與軸交于點,在拋物線的第一象限內(nèi),是否存在一點,使得四邊形的面積最大?若存在,請求出點的坐標(biāo);若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計算下列各式的值:

1-150+250

2

312-(-8)+(-7)-15

4

5(-7) ×(-5)-90÷(-15)

6 |2|(2.5)|14|

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,排球運動員站在點O處練習(xí)發(fā)球,將球從O點正上方2mA處發(fā)出,把球看成點,其運行的高度ym)與運行的水平距離x(m)滿足關(guān)系式y=a(x-6)2+h.已知球網(wǎng)與O點的水平距離為9m,高度為2.43m,球場的邊界距O點的水平距離為18m。

1)當(dāng)h=2.6時,求yx的關(guān)系式(不要求寫出自變量x的取值范圍)

2)當(dāng)h=2.6時,球能否越過球網(wǎng)?球會不會出界?請說明理由;

3)若球一定能越過球網(wǎng),又不出邊界,求h的取值范圍。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB∥CD,∠ABK的角平分線BE的反向延長線和∠DCK的角平分線CF的反向延長線交于點H,∠K﹣∠H=27°,則∠K=( 。

A. 76° B. 78° C. 80° D. 82°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知A(–4,n),B(2,–4)是一次函數(shù)y=kx+b的圖象和反比例函數(shù)的圖象的兩個交點

1)求反比例函數(shù)和一次函數(shù)的解析式;

2)求直線AB與x軸的交點C的坐標(biāo)及AOB的面積;

3)求不等式的解集(請直接寫出答案).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一副三角板的三個內(nèi)角分別是90°,45°,45°和90°,60°,30°,按如圖所示疊放在一起(點A,D,B在同一直線上),若固定△ABC,將△BDE繞著公共頂點B順時針旋轉(zhuǎn)α度(0α180),當(dāng)邊DE與△ABC的某一邊平行時,相應(yīng)的旋轉(zhuǎn)角α的值為____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線yk1x(x≥0)與雙曲線y (x0)相交于點P(2,4).已知點A(4,0),B(0,3),連接AB,將RtAOB沿OP方向平移,使點O移動到點P,得到APB′.過點AACy軸交雙曲線于點C,連接CP.

(1)k1k2的值;

(2)求直線PC的解析式;

(3)直接寫出線段AB掃過的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,如圖,在△ABC中,AB=AC,∠ABC=ACB,DAB的中點,DEABACE,若∠BEC=C.

(1)BE平分∠ABC,求∠A的度數(shù);

(2)若△ABC的周長為10,△BCE的周長為6,求BC的長度。

查看答案和解析>>

同步練習(xí)冊答案