【題目】安寧市的一種綠色蔬菜,若在市場上直接銷售,每噸利潤為1000元,若經(jīng)粗加工后銷售,每噸利潤可達4500元;若經(jīng)精加工后銷售每噸獲利7500元.當?shù)匾患肄r(nóng)產(chǎn)品企業(yè)收購這種蔬菜140噸,該企業(yè)加工廠的生產(chǎn)能力是:如果對蔬菜進行粗加工,每天可以加工16噸,如果進行精加工,每天可加工6噸,但兩種加工方式不能同時進行,受季節(jié)條件限制,企業(yè)必須在15天的時間將這批蔬菜全部銷售或加工完畢,企業(yè)研制了四種可行方案: 方案一:全部直接銷售;
方案二:全部進行粗加工;
方案三:盡可能多地進行精加工,沒有來得及進行精加工的直接銷售;
方案四:將一部分進行精加工,其余的進行粗加工,并恰好15天完成.
請通過計算以上四個方案的利潤,幫助企業(yè)選擇一個最佳方案使所獲利潤最多?

【答案】解:方案一可獲利潤:140×1000=140000(元); 方案二可獲利潤:4500×140=630000(元);
方案三可獲利潤:15×6×7500+(140﹣15×6)×1000=725000(元);
方案四:設(shè)精加工x噸食蔬菜,則粗加工(140﹣x)噸蔬菜,
根據(jù)題意得: + =15,
解得:x=60,
∴140﹣x=80.
此情況下利潤為:60×7500+80×4500=810000(元),
∵140000<630000<725000<810000,
∴企業(yè)選擇方案四所獲利潤最多
【解析】根據(jù)總利潤=單噸利潤×銷售質(zhì)量即可求出方案一、二、三的利潤,在方案四種,設(shè)精加工x噸食蔬菜,則粗加工(140﹣x)噸蔬菜,根據(jù)每天可精加工6噸或粗加工16噸結(jié)合加工總天數(shù)為15天即可得出關(guān)于x的一元一次方程,解之即可得出x的值,進而得出140﹣x的值,再根據(jù)總利潤=精加工部分的利潤+粗加工部分的利潤求出方案四的利潤,將四種方案獲得的利潤比較后即可得出結(jié)論.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知點EABCDBC邊的中點,連接AE并延長交DC的延長線于點F.

(1)連接AC,BF,若∠AEC=2ABC,求證:四邊形ABFC為矩形;

(2)(1)的條件下,若AFD是等邊三角形,且邊長為4,求四邊形ABFC的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在矩形AFCG中,BD垂直平分對角線AC,交CGD,交AFB,交ACO.連接AD,BC.

(1)求證:四邊形ABCD是菱形;

(2)EAB的中點,DEAB,求∠BDC的度數(shù);

(3)(2)的條件下,若AB=1,求菱形ABCD的對角線AC,BD的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】給出下列4個命題:①對頂角相等;②同位角相等;③在同一個圓中,同一條弦所對的圓周角都相等;④圓的內(nèi)接四邊形對角互補.其中,真命題為(

A. ①②④B. ①③④C. ①④D. ①②③④

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】x3時,代數(shù)式ax23x4的值為5,則字母a的值為________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在四邊形ABCD中,ABCD,請?zhí)砑右粋條件_____,使得四邊形ABCD是平行四邊形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知一個圓錐的底面半徑為3cm,母線長為10cm,則這個圓錐的側(cè)面積為cm2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知直線AB和CD相交于點O,∠COE=90°,OF平分∠AOE,∠COF=24°,求∠BOD的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABC中,AD是高,AE、BF是角平分線,它們相交于點O,CAB=500,C=600,求DAE和BOA的度數(shù)。

查看答案和解析>>

同步練習冊答案