【題目】如圖,AB為半圓O的直徑,AD、BC分別切⊙O于A,B兩點(diǎn),CD切⊙O于點(diǎn)E,連接OD、OC,下列結(jié)論:①∠DOC=90°,②AD+BC=CD,③SAOD:SBOC=AD2:AO2 , ④OD:OC=DE:OE,⑤OD2=DECD,正確的有(
A.2個(gè)
B.3個(gè)
C.4個(gè)
D.5個(gè)

【答案】D
【解析】解:連接OE,如圖所示: ∵AD與圓O相切,DC與圓O相切,BC與圓O相切,
∴∠DAO=∠DEO=∠OBC=90°,
∴DA=DE,CE=CB,AD∥BC,
∴CD=DE+EC=AD+BC,選項(xiàng)②正確;
在Rt△ADO和Rt△EDO中,
∴Rt△ADO≌Rt△EDO(HL),
∴∠AOD=∠EOD,
同理Rt△CEO≌Rt△CBO,
∴∠EOC=∠BOC,
又∠AOD+∠DOE+∠EOC+∠COB=180°,
∴2(∠DOE+∠EOC)=180°,
即∠DOC=90°,選項(xiàng)①正確;
∴∠DOC=∠DEO=90°,
又∠EDO=∠ODC,
∴△EDO∽△ODC,
,即OD2=DCDE,選項(xiàng)⑤正確;
∵∠AOD+∠COB=∠AOD+∠ADO=90°,
∠A=∠B=90°,
∴△AOD∽△BOC,
=( 2=( 2= ,選項(xiàng)③正確;
同理△ODE∽△OEC,
∴OD:OC=DE:OE,選項(xiàng)④正確;
故選D.

連接OE,利用切線長(zhǎng)定理得到DE=DA,CE=CB,由CD=DE+EC,等量代換可得出CD=AD+BC,選項(xiàng)②正確;由AD=ED,OD為公共邊,利用HL可得出直角三角形ADO與直角三角形EDO全等,可得出∠AOD=∠EOD,同理得到∠EOC=∠BOC,而這四個(gè)角之和為平角,可得出∠DOC為直角,選項(xiàng)①正確;由∠DOC與∠DEO都為直角,再由一對(duì)公共角相等,利用兩對(duì)對(duì)應(yīng)角相等的兩三角形相似,可得出三角形DEO與三角形DOC相似,由相似得比例可得出OD2=DECD,選項(xiàng)⑤正確;由△AOD∽△BOC,可得選項(xiàng)③正確;由△ODE∽△OEC,可得選項(xiàng)④正確.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,正方形AOCB的邊長(zhǎng)為4,反比例函數(shù)y= (k≠0,且k為常數(shù))的圖象過點(diǎn)E,且SAOE=3SOBE
(1)求k的值;
(2)反比例函數(shù)圖象與線段BC交于點(diǎn)D,直線y= x+b過點(diǎn)D與線段AB交于點(diǎn)F,延長(zhǎng)OF交反比例函數(shù)y= (x<0)的圖象于點(diǎn)N,求N點(diǎn)坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在等邊三角形ABC中,點(diǎn)D、點(diǎn)E分別為AB,AC上的點(diǎn),BE與CD相交于點(diǎn)F,BF=4EF=4,CE=AD.則SAEB=

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在數(shù)軸上,點(diǎn)A、B分別表示點(diǎn)﹣5、3,M、N兩點(diǎn)分別從A、B同時(shí)出發(fā)以3cm/s、1cm/s的速度沿?cái)?shù)軸向右運(yùn)動(dòng).

(1)求線段AB的長(zhǎng);

(2)求當(dāng)點(diǎn)M、N重合時(shí),它們運(yùn)動(dòng)的時(shí)間;

(3)M、N在運(yùn)動(dòng)的過程中是否存在某一時(shí)刻,使BM=2BN.若存在請(qǐng)求出它們運(yùn)動(dòng)的時(shí)間,若不存在請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABC中,∠ACB=90°,AC=BC,ABC的高CD與角平分線AE相交點(diǎn)F,過點(diǎn)CCHAEG,交ABH.下列說法:①∠BCH=CAE;DF=EF;CE=BH;SABE=2SACECF=DF.正確的是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四邊形ABHK是邊長(zhǎng)為6的正方形,點(diǎn)C、D在邊AB上,且AC=DB=1,點(diǎn)P是線段CD上的動(dòng)點(diǎn),分別以AP、PB為邊在線段AB的同側(cè)作正方形AMNP和正方形BRQP,E、F分別為MN、QR的中點(diǎn),連接EF,設(shè)EF的中點(diǎn)為G,則當(dāng)點(diǎn)P從點(diǎn)C運(yùn)動(dòng)到點(diǎn)D時(shí),點(diǎn)G移動(dòng)的路徑長(zhǎng)為( )

A.1
B.2
C.3
D.6

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】先閱讀下面例題的解法,然后解答問題:

例:若多項(xiàng)式2x3-x2+m分解因式的結(jié)果中有因式2x+1,求實(shí)數(shù)m的值.

解:設(shè)2x3-x2+m=(2x+1)·A(A為整式).

2x3-x2+m=(2x+1)·A=0,則2x+1=0A=0.

2x+1=0,解得x=-.

x=-是方程2x3-x2+m=0的解. 2×(-)3-(-)2+m=0,即--+m=0. m=.

(1)若多項(xiàng)式x2+px-6分解因式的結(jié)果中有因式x-3,則實(shí)數(shù)p= ;

(2)若多項(xiàng)式x3+5x2+7x+q分解因式的結(jié)果中有因式x+1,求實(shí)數(shù)q的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,△ABC中,點(diǎn)O是∠BCA與∠ABC的平分線的交點(diǎn),過O作與BC平行的直線分別交AB、ACD、E.已知△ABC的周長(zhǎng)為15,BC的長(zhǎng)為6,求△ADE的周長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)B、E分別在直線ACDF上,若∠AGB=∠EHF,∠C=∠D,可以證明∠A=∠F.請(qǐng)完成下面證明過程中的各項(xiàng)“填空”.

證明:∵∠AGB=∠EHF(理由:

∠AGB= (對(duì)頂角相等)

∴∠EHF=∠DGF,∴DB∥EC(理由:

=∠DBA(兩直線平行,同位角相等)

又∵∠C=∠D,∴∠DBA=∠D,

∴DF∥ (內(nèi)錯(cuò)角相等,兩直線平行)

∴∠A=∠F(理由: ).

查看答案和解析>>

同步練習(xí)冊(cè)答案