【題目】如圖,已知:E是∠AOB的平分線上一點(diǎn),EC⊥OB,ED⊥OA,C、D是垂足,連接CD,且交OE于點(diǎn)F.
(1)求證:OE是CD的垂直平分線.
(2)若∠AOB=60,請(qǐng)你探究OE,EF之間有什么數(shù)量關(guān)系?并證明你的結(jié)論。
【答案】
見解析;OE=4EF
【解析】試題分析:根據(jù)角平分線的性質(zhì)可得ED=EC,結(jié)合OE=OE得出△OED和△OEC全等,從而得出OC=OD,根據(jù)等腰三角形三線合一定理得出答案;根據(jù)OE平分∠AOB以及∠AOB=60°得到∠AOE=∠BOE=30°,從而得到OE=2DE,根據(jù)同理得出DE=2EF,從而得到答案.
試題解析:證明:(1)∵E是∠AOB的平分線上一點(diǎn),EC⊥OB,ED⊥OA ∴ED=EC ∵OE=OE
∴Rt△OED≌Rt△OEC ∴OC=OD ∵OE平分∠AOB ∴OE是CD的垂直平分線.
(2)OE=4EF
理由如下:∵OE平分∠AOB, ∠AOB=60 ∴∠AOE=∠BOE=30 ∵ED⊥OA ∴OE=2DE
∵∠EFD=90,∠DEO=90-∠DOE=90-30=60 ∴∠EDF=30 ∴DE=2EF ∴OE=4EF
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】圖1是一段圓柱體的樹干的示意圖,已知樹干的半徑r=10cm,AD=45cm. (π值取3)
(1)若螳螂在點(diǎn)A處,蟬在點(diǎn)C處,圖1中畫出了螳螂捕蟬的兩條路線,即A→D→C和A→C,圖2是該圓柱體的側(cè)面展開圖,判斷哪條路的距離較短,并說明理由;
(2)若螳螂在點(diǎn)A處,蟬在點(diǎn)D處,螳螂想要捕到這只蟬,但又怕蟬發(fā)現(xiàn),于是螳螂繞到
后方去捕捉它,如圖3所示,求螳螂爬行的最短距離;(提示: =75)
(3)圖4是該圓柱體的側(cè)面展開圖,蟬N在半徑為10cm的⊙O的圓上運(yùn)動(dòng),⊙O與BC相切,點(diǎn)O到CD的距離為20cm,螳螂M在線段AD運(yùn)動(dòng)上,連接MN,MN即為螳螂捕蟬時(shí)螳螂爬行的距離,若要使MN與⊙O總是相切,求MN的長度范圍.
圖1 圖2 圖3 圖4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】長方形具有四個(gè)內(nèi)角均為直角,并且兩組對(duì)邊分別相等的特征.如圖,把一張長方形紙片ABCD折疊,使點(diǎn)C與點(diǎn)A重合,折痕為EF.
(1)如果∠DEF=123°,求∠BAF的度數(shù);
(2)判斷△ABF和△AGE是否全等嗎?請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,有一個(gè)直角三角形紙片,兩直角邊AC=6cm,BC=8cm,現(xiàn)將直角邊AC沿∠CAB的角平分線AD折疊,使它落在斜邊AB上,且與AE重合,你能求出CD的長嗎?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】周日,小濤從家沿著一條筆直的公路步行去報(bào)亭看報(bào),看了一段時(shí)間后,他按原路返回家中,小濤離家的距離y(單位:m)與他所用的時(shí)間t(單位:min)之間的函數(shù)關(guān)系如圖所示,下列說法中正確的是( )
A. 小濤家離報(bào)亭的距離是900m
B. 小濤從家去報(bào)亭的平均速度是60m/min
C. 小濤從報(bào)亭返回家中的平均速度是80m/min
D. 小濤在報(bào)亭看報(bào)用了15min
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xoy中,點(diǎn)A、B、C的坐標(biāo)分別為(-1,0)、(-2,3)、(-3,1).
(1)作出△ABC關(guān)于x軸對(duì)稱的 △A1B1C1,并寫出B1、C1
兩點(diǎn)的坐標(biāo):B1: , C1: .
(2)△ABC的面積S△ABC= .
(3)若D點(diǎn)在y軸上運(yùn)動(dòng),求CD+DA的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,平面直角坐標(biāo)系中,直線AB:y=﹣x+b交y軸于點(diǎn)A(0,4),交x軸于點(diǎn)B.
(1)求直線AB的表達(dá)式和點(diǎn)B的坐標(biāo);
(2)直線l垂直平分OB交AB于點(diǎn)D,交x軸于點(diǎn)E,點(diǎn)P是直線l上一動(dòng)點(diǎn),且在點(diǎn)D的上方,設(shè)點(diǎn)P的縱坐標(biāo)為n.
①用含n的代數(shù)式表示△ABP的面積;
②當(dāng)S△ABP=8時(shí),求點(diǎn)P的坐標(biāo);
③在②的條件下,以PB為斜邊在第一象限作等腰直角△PBC,求點(diǎn)C的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若“”是某種新規(guī)定的運(yùn)算符號(hào),設(shè)ab=3a+2b,則[(x+y)(x﹣y)]3x化簡為( )
A.0
B.21x+3y
C.5x
D.9x+6y
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com