【題目】如圖1,正方形ABCD中,點(diǎn)E是BC延長(zhǎng)線上一點(diǎn),連接DE,過(guò)點(diǎn)B作BF⊥DE于點(diǎn)F,連接FC
.
(1)求證:∠FBC=∠CDF.
(2)作點(diǎn)C關(guān)于直線DE的對(duì)稱點(diǎn)G,連接CG,F(xiàn)G.
①依據(jù)題意補(bǔ)全圖形;
②用等式表示線段DF,BF,CG之間的數(shù)量關(guān)系并加以證明.
【答案】(1)見解析;(2) ①見解析;②BF=DF+CG,理由見解析.
【解析】分析:(1)由∠FBC+∠COB=90°,∠CDF+∠DOF=90°,根據(jù)等角的余角相等證明即可;
(2)①根據(jù)題意畫出圖形即可;②結(jié)論:BF=DF+CG.利用截長(zhǎng)補(bǔ)短法,構(gòu)造相似三角形解決問(wèn)題即可;
詳解:(1)證明:如圖1中,設(shè)CD交BF于點(diǎn)O.
∵四邊形ABCD是正方形,
∴∠BCO=90°,
∵BF⊥DE,
∴∠OFD=∠OCB=90°,
∴∠FBC+∠COB=90°,∠CDF+∠DOF=90°,
∵∠DOF=∠BOC,
∴∠FBC=∠CDF.
(2)解:①如圖2中,
②結(jié)論:BF=DF+CG.
理由:在線段FB上截取FM,使得FM=FD.
∵∠BDC=∠MDF=45°,
∴∠BDM=∠CDF,
∵==,
∴△BDM∽△CDF,
∴==,∠DBM=∠DCF,
∴BM=CF,
∴∠CFE=∠FCD+∠CDF=∠DBM+∠BDM=∠DMF=45°,
∴∠EFG=∠EFC=45°,
∴∠CFG=90°,
∵CF=FG,
∴CG=CF,
∴BM=CG,
∴BF=BM+FM=CG+DF.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖:在△ABC中,BE、CF分別是AC、AB兩邊上的高,在BE上截取BD=AC,在CF的延長(zhǎng)線上截取CG=AB,連接AD、AG.
(1)求證:AD=AG;
(2)AD與AG的位置關(guān)系如何,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,一方隊(duì)正沿箭頭所指的方向前進(jìn)
(1)A的位置為第三列第四行,表示為(3,4),那么B的位置是____________.
A. B. C. D.
(2)B左側(cè)第二個(gè)人的位置是____________.
A. B. C. D.
(3)如果隊(duì)伍向東前進(jìn),那么A北側(cè)第二個(gè)人的位置是____________.
A. B. C. D.
(4)表示的位置是____________.
A.A B.B C.C D.D
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在矩形ABCD中,邊AB的長(zhǎng)為3,點(diǎn)E,F分別在AD,BC上,連接BE,DF,EF,BD.若四邊形BEDF是菱形,且EF=AE+FC,則邊BC的長(zhǎng)為( 。
A. 2B. 3 C. 6D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,把邊長(zhǎng)為2的等邊三角形△ABC沿直線BC向右平移,使點(diǎn)B與點(diǎn)C重合,得到△DCE,連接BD,交AC于點(diǎn)F.
(1)證明:AC⊥BD;
(2)求線段BD的長(zhǎng)。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】小明購(gòu)買了一套安居型商品房,他準(zhǔn)備將地面鋪上地磚,地面結(jié)構(gòu)如圖所示.請(qǐng)根據(jù)圖中的數(shù)據(jù)(單位:m),解答下列問(wèn)題:
(1)用含x、y的代數(shù)式表示地面總面積;
(2)若x=5,y=,鋪1m2地磚的平均費(fèi)用為80元,那么鋪地磚的總費(fèi)用為多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,正方形ABCD邊長(zhǎng)為3,連接AC,AE平分∠CAD,交BC的延長(zhǎng)線于點(diǎn)E,FA⊥AE,交CB延長(zhǎng)線于點(diǎn)F,則EF的長(zhǎng)為__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,∠C=90,AC=BC,AD平分∠CAB,DE⊥AB,垂足為E.
(1)求證:CD=BE;
(2)若AB=10,求BD的長(zhǎng)度。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,△ABC的位置如圖所示(每個(gè)小方格都是邊長(zhǎng)為1個(gè)單位長(zhǎng)度的正方形).
(1)將△ABC沿x軸方向向左平移6個(gè)單位,畫出平移后得到的△A1B1C1;
(2)將△ABC繞著點(diǎn)A順時(shí)針旋轉(zhuǎn)90°,畫出旋轉(zhuǎn)后得到的△AB2C2,并直接寫出點(diǎn)B2、C2的坐標(biāo).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com