【題目】為了解某縣建檔立卡貧困戶對精準扶貧政策落實的滿意度,現(xiàn)從全縣建檔立卡貧困戶中隨機抽取了部分貧困戶進行了調(diào)查(把調(diào)查結(jié)果分為四個等級:A級:非常滿意:B級滿意;C級:基本滿意:D級:不滿意),并將調(diào)查結(jié)果繪制成如兩幅不完整的統(tǒng)計圖,請根據(jù)統(tǒng)計圖中的信息解決下列問題:
(1)本次抽樣調(diào)查測試的建檔立卡貧困戶的總戶數(shù)是 ;
(2)圖①中,∠α的度數(shù)是 ,并把圖②條形統(tǒng)計圖補充完整;
(3)某縣建檔立卡貧困戶有10000戶,如果全部參加這次滿意度調(diào)查,請估計非常滿意的戶數(shù)約為多少戶?
【答案】(1)60戶;(2)54°;(3)1500戶.
【解析】
(1)由B級別戶數(shù)及其對應百分比可得答案;
(2)求出A級對應百分比可得∠α的度數(shù),再求出C級戶數(shù)即可把圖2條形統(tǒng)計圖補充完整;
(3)利用樣本估計總體思想求解可得.
解:(1)由圖表信息可知本次抽樣調(diào)查測試的建檔立卡貧困戶的總戶數(shù)=21÷35%=60(戶)
故答案為:60戶;
(2)圖1中,∠α的度數(shù)=×360°=54°; C級戶數(shù)為:60﹣9﹣21﹣9=21(戶),
補全條形統(tǒng)計圖如圖2所示:
故答案為:54°;
(3)估計非常滿意的人數(shù)約為×10000=1500(戶).
科目:初中數(shù)學 來源: 題型:
【題目】點 A(2,m),B(2,m-5)在平面直角坐標系中,點O為坐標原點.若△ABO是直角三角形,則m的值不可能是( )
A.4B.2C.1D.0
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知拋物線的對稱軸是直線,與x軸相交于A,B兩點(點B在點A右側(cè)),與y軸交于點C.
(1)求拋物線的解析式和A,B兩點的坐標;
(2)如圖1,若點P是拋物線上B,C兩點之間的一個動點(不與B,C重合),是否存在點P,使四邊形PBOC的面積最大?若存在,求點P的坐標及四邊形PBOC面積的最大值;若不存在,請說明理由;
(3)如圖2,若點M是拋物線上任意一點,過點M作y軸的平行線,交直線BC于點N,當MN=3時,求點M的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,CE是□ABCD的邊AB的垂直平分線,垂足為點O,CE與DA的延長線交于點E、連接AC,BE,DO,DO與AC交于點F,則下列結(jié)論:①四邊形ACBE是菱形;②∠ACD=∠BAE;③AF:BE=2:3;④S四邊形AFOE:S△COD=2:3.其中正確的結(jié)論有( )個.
A. 1B. 2C. 3D. 4
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】拋物線y=ax2+bx+c的對稱軸是直線x=﹣1,且過點(1,0).頂點位于第二象限,其部分圖象如圖4所示,給出以下判斷:①ab>0且c<0;②4a﹣2b+c>0;③8a+c>0;④c=3a﹣3b;⑤直線y=2x+2與拋物線y=ax2+bx+c兩個交點的橫坐標分別為x1,x2,則x1+x2+x1x2=5.其中正確的個數(shù)有( 。
A.5個B.4個C.3個D.2個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知拋物線和拋物線 (n為正整數(shù)).
(1)拋物線與x軸的交點坐標為 .頂點坐標為 .
(2)當n=1時,請解答下列問題:
①拋物線與x軸的交點坐標為 .頂點坐標為 .請寫出拋物線y,的一條相同的性質(zhì).
②當直線與拋物線y,,共有4個交點時,求m的取值范圍
(3)若直線y=k(k<0)與拋物線y,共有4個交點,從左至右依次標記為點A,B,C,D,當AB=BC=CD時,求出k,n之間滿足的關系式.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,拋物線,與x軸交于A、B兩點(點A在點B的左側(cè)).
(1)求點A和點B的坐標;
(2)若點P(m,n)是拋物線上的一點,過點P作x軸的垂線,垂足為點D.
①在的條件下,當時,n的取值范圍是,求拋物線的表達式;
②若D點坐標(4,0),當時,求a的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某超市銷售一種商品,成本價為50元/千克,規(guī)定每千克售價不低于成本價,且不高于85元.經(jīng)過市場調(diào)查,該商品每天的銷售量(千克)與售價(元/千克)滿足一次函數(shù)關系,部分數(shù)據(jù)如下表:
售價(元/千克) | 50 | 60 | 70 |
銷售量(千克) | 120 | 100 | 80 |
(1)求與之間的函數(shù)表達式.
(2)設該商品每天的總利潤為(元),則當售價定為多少元/千克時,超市每天能獲得最大利潤?最大利潤是多少元?
(3)如果超市要獲得每天不低于1600元的利潤,且符合超市自己的規(guī)定,那么該商品的售價的取值范圍是多少?請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】記某商品銷售單價為x元,商家銷售此種商品每月獲得的銷售利潤為y元,且y是關于x的二次函數(shù).已知當商家將此種商品銷售單價分別定為55元或75元時,他每月均可獲得銷售利潤1800元;當商家將此種商品銷售單價定為80元時,他每月可獲得銷售利潤1550元,則y與x的函數(shù)關系式是( )
A.y=﹣(x﹣60)2+1825B.y=﹣2(x﹣60)2+1850
C.y=﹣(x﹣65)2+1900D.y=﹣2(x﹣65)2+2000
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com