【題目】某校在一次大課間活動中,采用了四種活動形式:A:跑步;B:跳繩;C:做操;D:游戲,全校學生都選擇了一種形式參與活動,小明對同學們選擇的活動形式進行了隨機抽樣調(diào)查,并繪制了不完整的兩幅統(tǒng)計圖,結(jié)合統(tǒng)計圖,回答下列問題:

1)本次調(diào)查學生共   人,并將條形圖補充完整;

2)如果該校有學生2000人,請你估計該校選擇“跑步”這種活動的學生約有多少人?

3)學校在每班A、BC、D四種活動形式中,隨機抽取兩種開展活動,求每班抽取的兩種形式恰好是“做操”和“跳繩”的概率.

【答案】(1)300;(2)選擇“跑步”這種活動的學生約有800人;(3)

【解析】

1)用A類的人數(shù)除以它所占的百分比得到調(diào)查的總?cè)藬?shù),再用總?cè)藬?shù)減去其它項目的人數(shù),求出跳繩的人數(shù),從而補全統(tǒng)計圖;

2)用該校的總?cè)藬?shù)乘以“跑步”的人數(shù)所占的百分比即可;

3)畫樹狀圖展示所有12種等可能的結(jié)果數(shù),找出每班抽取的兩種形式恰好是“做操”和“跳繩”的結(jié)果數(shù),然后利用概率公式求解.

(1)根據(jù)題意得:120÷40%=300(人),

所以本次共調(diào)查了300名學生;

跳繩的有300﹣120﹣60﹣90=30人,補圖如下:

故答案為:300;

(2)根據(jù)題意得:

2000×40%=800(人),

答:選擇“跑步”這種活動的學生約有800人;

(3)畫樹狀圖為:

共有12種等可能的結(jié)果數(shù),其中每班抽取的兩種形式恰好是“做操”和“跳繩”的結(jié)果數(shù)為2,

所以每班抽取的兩種形式恰好是“做操”和“跳繩”的概率=

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在矩形ABCD中,AB=3,BC=5,以B為圓心BC為半徑畫弧交AD于點E,連接CE,作BFCE,垂足為F,則tanFBC的值為(  )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某工廠計劃生產(chǎn)一種創(chuàng)新產(chǎn)品,若生產(chǎn)一件這種產(chǎn)品需A種原料1.2千克、B種原料1千克.已知A種原料每千克的價格比B種原料每千克的價格多10元.

(1)為使每件產(chǎn)品的成本價不超過34元,那么購入的B種原料每千克的價格最高不超過多少元?

(2)將這種產(chǎn)品投放市場批發(fā)銷售一段時間后,為拓展銷路又開展了零售業(yè)務(wù),每件產(chǎn)品的零售價比批發(fā)價多30元.現(xiàn)用10000元通過批發(fā)價購買該產(chǎn)品的件數(shù)與用16000元通過零售價購買該產(chǎn)品的件數(shù)相同,那么這種產(chǎn)品的批發(fā)價是多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖是由邊長為1的小正方形組成的8×4網(wǎng)格,每個小正方形的頂點叫做格點,點A,B,C,D均在格點上,在網(wǎng)格中將點D按下列步驟移動:

第一步:點D繞點A順時針旋轉(zhuǎn)180°得到點D1;

第二步:點D1繞點B順時針旋轉(zhuǎn)90°得到點D2;

第三步:點D2繞點C順時針旋轉(zhuǎn)90°回到點D.

(1)請用圓規(guī)畫出點D→D1→D2→D經(jīng)過的路徑;

(2)所畫圖形是什么對稱圖形;

(3)求所畫圖形的周長(結(jié)果保留π).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知關(guān)于的一元二次方程 有實數(shù)根.

(1)求的取值范圍;

(2)若 兩個實數(shù)根分別為 ,且,求的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,某數(shù)學興趣小組為測量一棵古樹BH和教學樓CG的高,先在A處用高1.5米的測角儀測得古樹頂端H的仰角∠HDE為45°,此時教學樓頂端G恰好在視線DH上,再向前走7米到達B處,又測得教學樓頂端G的仰角∠GEF為60°,點A、B、C三點在同一水平線上.

(1)計算古樹BH的高;

(2)計算教學樓CG的高.(參考數(shù)據(jù):≈14,≈1.7)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下面是小西“過直線外一點作這條直線的垂線”的尺規(guī)作圖過程.

已知:直線l及直線l外一點P.

求作:直線PQ,使得PQl.

做法:如圖,

①在直線l的異側(cè)取一點K,以點P為圓心,PK長為半徑畫弧,交直線l于點AB;

②分別以點AB為圓心,大于AB的同樣長為半徑畫弧,兩弧交于點Q(P點不重合);

③作直線PQ,則直線PQ就是所求作的直線.

根據(jù)小西設(shè)計的尺規(guī)作圖過程,

(1)使用直尺和圓規(guī),補全圖形;(保留作圖痕跡)

(2)完成下面的證明.

證明:∵PA= ,QA= ,

PQl( )(填推理的依據(jù)).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下面是小明設(shè)計的“作平行四邊形的高”的尺規(guī)作圖過程

已知:平行四邊形ABCD.

求作:,垂足為點E.

作法:如圖,

①分別以點A和點B為圓心,大于的長為半徑作弧,兩弧相交于P,Q兩點;

②作直線PQ,交AB于點O;

③以點O為圓心,OA長為半徑做圓,交線段BC于點E;

④連接AE.

所以線段AE就是所求作的高.

根據(jù)小明設(shè)計的尺規(guī)作圖過程

⑴使用直尺和圓規(guī),補全圖形;(保留作圖痕跡)

⑵完成下面的證明

證明:AP=BP, AQ= ,

PQ為線段AB的垂直平分線.

O為AB中點.

AB為直徑,⊙O與線段BC交于點E,

.( )(填推理的依據(jù))

.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在正方形網(wǎng)格中建立如圖所示的平面直角坐標系xOy.△ABC的三個頂點都在格點上,點A、BC的坐標分別是A4,4)、B1,2)、C3,2),請解答下列問題.

1)將△ABC向下平移5個單位長度,畫出平移后的△A1B1C1;

2)畫出△A1B1C1關(guān)于y軸對稱的△A2B2C2;

3)將△ABC繞點O逆時針旋轉(zhuǎn)90°,畫出旋轉(zhuǎn)后的△A3B3C3.并寫出點A3的坐標.

查看答案和解析>>

同步練習冊答案