【題目】如圖,點(diǎn) E 是邊長(zhǎng)為 1 的正方形 ABCD 的對(duì)角線(xiàn) BD 上的一個(gè)動(dòng)點(diǎn)不與 B、D 兩點(diǎn)重合,過(guò)點(diǎn) E 作直線(xiàn) MN∥DC,交 AD M,交 BC N,連接 AE,作 EF⊥AE E,交直線(xiàn) CB F.

(1)如圖 1,當(dāng)點(diǎn) F 在線(xiàn)段 CB 上時(shí),通過(guò)觀察或測(cè)量,猜想△AEF 的形狀,并證明你的猜想;

(2)如圖 2,當(dāng)點(diǎn) F 在線(xiàn)段 CB 的延長(zhǎng)線(xiàn)上時(shí),其它條件不變,(1)中的結(jié)論還成立嗎?若成立,請(qǐng)給出證明;若不成立,請(qǐng)說(shuō)明理由;

(3)在點(diǎn) E 從點(diǎn)D 向點(diǎn)B 的運(yùn)動(dòng)過(guò)程中,四邊形 AFNM 的面積是否會(huì)發(fā)生變化?若發(fā)生了變化,請(qǐng)說(shuō)明理由;若沒(méi)有發(fā)生變化,請(qǐng)求出其面積的值.

【答案】(1)△AEF是等腰直角三角形,證明見(jiàn)解析;(2)△AEF是等腰直角三角形,證明見(jiàn)解析;(3)四邊形 AFNM 的面積沒(méi)有發(fā)生改變,都是

【解析】

根據(jù)四邊形 ABCD 是正方形,BD 是對(duì)角線(xiàn),且 MNBA,求證△

DEM 和△BNE 都是等腰直角三角形.又利用 EFAE,可得∠EFN=AEM,然后即可求證,△AME≌△ENF;

利用(1)中證法求出 BN=EN=AM,AEM=EFN,即可得出答案;

分兩種情況進(jìn)行討論:(i)當(dāng)點(diǎn) E 運(yùn)動(dòng)到 BD 的中點(diǎn)時(shí),利用四邊形 AFNM

是矩形,可得 S四邊形AFNM=

(ii)當(dāng)點(diǎn) E 不在 BD 的中點(diǎn)時(shí),點(diǎn) E 在運(yùn)動(dòng)與點(diǎn) B、D 不重合的過(guò)程中,四邊形 AFNM 是直角梯形.由(1)知,△AME≌△ENF,同理,圖(2)AME≌△ENF,然后即可得出結(jié)論.

(1)∵四邊形 ABCD 是正方形,BD 是對(duì)角線(xiàn),且 MNAB,

∴四邊形 ABNM 和四邊形 MNCD 都是矩形,

NEB 和△MDE 都是等腰直角三角形.

∴∠AEF=ENF=90°,MN=BC=AB,EN=BN

EN=AM,

又∵∠AEM+FEN=90°,AEM+EAM=90°

∴∠EAM=FEN,

∵∠AME=ENF=90°,

∴△AME≌△ENF(ASA);

AE=BE,

AEEF,

∴△AEF 是等腰直角三角形;

(2)由(1)同理可得:

BN=EN=AM,

AEM=EFN,

∵∠AME=ENF=90°

∴△AME≌△ENF(ASA);

AE=EF,

AEEF,

∴△AEF 是等腰直角三角形;

四邊形 AFNM 的面積沒(méi)有發(fā)生變化

(i)當(dāng)點(diǎn) E 運(yùn)動(dòng)到 BD 的中點(diǎn)時(shí),

四邊形 AFNM 是矩形,S 四邊形AFNM=

(ii)當(dāng)點(diǎn) E 不在 BD 的中點(diǎn)時(shí),點(diǎn) E 在運(yùn)動(dòng)(與點(diǎn) B、D 不重合)的過(guò)程中,四邊形 AFNM 是直角梯形.

由(1)知,△AME≌△ENF,

同理,圖(2),AME≌△ENF,

FN=EM=DM.

FN+AM=DM+AM=AD=1

這時(shí),S 四邊形AFNM

綜合(i)、(ii)可知四邊形 AFNM 的面積沒(méi)有發(fā)生改變,都是

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知 AB 是⊙O 的直徑,點(diǎn) C、D 在⊙O 上,過(guò) D 點(diǎn)作 PF∥AC交⊙O 于 F,交 AB 于點(diǎn) E,∠BPF=∠ADC

(1)求證:AEEB=DEEF.

(2)求證:BP 是⊙O 的切線(xiàn):

(3)當(dāng)?shù)陌霃綖?/span>,AC=2,BE=1 時(shí),求 BP 的長(zhǎng),

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在RtABC中,BAC=90°,AC=2AB,點(diǎn)DAC的中點(diǎn).將一塊銳角為45°的直角三角板如圖放置,使三角板斜邊的兩個(gè)端點(diǎn)分別與A、D重合,連接BE、EC

試猜想線(xiàn)段BEEC的數(shù)量及位置關(guān)系,并證明你的猜想.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知AC=BC,點(diǎn)DBC上一點(diǎn),∠ADE=C

1)如圖1,若∠C=90°,∠DBE=135°

①求證:∠EDB=CAD;

②求證:DA=DE;

2)如圖2,若∠C=40°,DA=DE,求∠DBE的度數(shù);

3)如圖3,請(qǐng)直接寫(xiě)出∠DBE與∠C之間滿(mǎn)足什么數(shù)量關(guān)系時(shí),總有DA=DE成立.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四邊形ABCD中,∠BAD=120°,B=D=90°,在BC,CD上分別找一點(diǎn)M,N,使AMN周長(zhǎng)最小時(shí),則∠AMN+ANM的度數(shù)是________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】把一副普通撲克牌中的4張;黑桃2,紅心3,梅花4,黑桃5,洗勻后正面朝下放在桌面上.

(1)從中隨機(jī)抽取一張牌是黑桃的概率是多少?

(2)從中隨機(jī)抽取一張,再?gòu)氖O碌呐浦须S機(jī)抽取另一張. 請(qǐng)用表格或樹(shù)狀圖表示抽取的兩張牌牌面數(shù)字所有可能出現(xiàn)的結(jié)果,并求抽取的兩張牌牌面數(shù)字之和大于7的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在路燈下,小明的身高如圖中線(xiàn)段AB所示,他在地面上的影子如圖中線(xiàn)段AC所示,小亮的身高如圖中線(xiàn)段FG所示,路燈燈泡在線(xiàn)段DE上.

1)請(qǐng)你確定燈泡所在的位置,并畫(huà)出小亮在燈光下形成的影子.

2)如果小明的身高AB=1.6m,他的影子長(zhǎng)AC=1.4m,且他到路燈的距離AD=2.1m,求燈泡的高.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】□ABCD中,E、F是對(duì)角線(xiàn)BD上不同的兩點(diǎn),下列條件中,不能得出四邊形AECF一定為平行四邊形的是(

A. BE=DF B. AE=CF C. AF//CE D. BAE=DCF

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】聯(lián)想三角形外心的概念,我們可引入如下概念。

定義:到三角形的兩個(gè)頂點(diǎn)距離相等的點(diǎn),叫做此三角形的準(zhǔn)外心。

舉例:如圖1,若PA=PB,則點(diǎn)P為△ABC的準(zhǔn)外心。

應(yīng)用:如圖2,CD為等邊三角形ABC的高,準(zhǔn)外心P在高CD上,且PD=AB,求∠APB的度數(shù)。

探究:已知△ABC為直角三角形,斜邊BC=5,AB=3,準(zhǔn)外心P在AC邊上,試探究PA的長(zhǎng)。

查看答案和解析>>

同步練習(xí)冊(cè)答案