【題目】如圖,AB是⊙O的直徑,點(diǎn)F、C是⊙O上兩點(diǎn),且 = = ,連接AC、AF,過(guò)點(diǎn)C作CD⊥AF,交AF的延長(zhǎng)線于點(diǎn)D,垂足為D,若CD=2 ,則⊙O的半徑為(
A.2
B.4
C.2
D.4

【答案】D
【解析】解:連結(jié)BC,如圖, ∵AB為直徑,
∴∠ACB=90°,
= =
∴∠BOC= ×180°=60°,
∴∠BAC=30°,
∴∠DAC=30°,
在Rt△ADC中,CD=2 ,
∴AC=2CD=4 ,
在Rt△ACB中,BC2+AC2=AB2 ,
即(4 2+( AB)2=AB2 ,
∴AB=8,
∴⊙O的半徑為4.
故選D.

【考點(diǎn)精析】解答此題的關(guān)鍵在于理解圓心角、弧、弦的關(guān)系的相關(guān)知識(shí),掌握在同圓或等圓中,相等的圓心角所對(duì)的弧相等,所對(duì)的弦也相等;在同圓或等圓中,同弧等弧所對(duì)的圓周角相等,都等于這條弧所對(duì)的圓心角的一半,以及對(duì)圓周角定理的理解,了解頂點(diǎn)在圓心上的角叫做圓心角;頂點(diǎn)在圓周上,且它的兩邊分別與圓有另一個(gè)交點(diǎn)的角叫做圓周角;一條弧所對(duì)的圓周角等于它所對(duì)的圓心角的一半.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,△ABC中,ABAC10,BC16.點(diǎn)D在邊BC上,且點(diǎn)D到邊AB和邊AC的距離相等.

1)用直尺和圓規(guī)作出點(diǎn)D(不寫作法,保留作圖痕跡,在圖上標(biāo)注出點(diǎn)D);

2)求點(diǎn)D到邊AB的距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】順次連接一個(gè)對(duì)角線互相垂直的四邊形各邊中點(diǎn),所得的四邊形是 形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在圖a、圖b、圖c中都有直線mn,

(1)在圖a中,∠2和∠1、∠3之間的數(shù)量關(guān)系是__________________

(2)猜想:在圖b中,∠1、∠2、∠3、∠4之間的數(shù)量關(guān)系是____________________

(3)猜想:在圖c中,∠2、∠4和∠1、∠3、∠5的數(shù)量關(guān)系式是____________________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知∠BOC60°,OF平分∠BOC.AOBOOE平分∠AOC,則∠EOF的度數(shù)是(  )

A. 45°

B. 15°

C. 30°60°

D. 45°15°

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,⊙O的半徑是8,AB是⊙O的直徑,M為AB上一動(dòng)點(diǎn), = = ,則CM+DM的最小值為

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,取兩根木條a、b,將它們釘在一起,并把它們想象成兩條直線,就得到一個(gè)相交線的模型.你能說(shuō)出其中的一些鄰補(bǔ)角與對(duì)頂角嗎??jī)筛緱l所成的角中,如果∠α35°,其它三個(gè)角各等于多少度?如果∠α等于90°,115°,m°呢?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四邊形ABCD中,AB=10,BC=13,CD=12,AD=5,AD⊥CD,求四邊形ABCD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某中學(xué)對(duì)全校1 200名學(xué)生進(jìn)行校園安全知識(shí)的教育活動(dòng),從1 200名學(xué)生中隨機(jī)抽取部分學(xué)生進(jìn)行測(cè)試,成績(jī)?cè)u(píng)定按從高分到低分排列分為AB,CD四個(gè)等級(jí),并繪制了圖1、圖2兩幅不完整的統(tǒng)計(jì)圖,請(qǐng)結(jié)合圖中所給信息解答下列問(wèn)題:

(1)求本次抽查的學(xué)生共有多少人;

(2)將條形統(tǒng)計(jì)圖和扇形統(tǒng)計(jì)圖補(bǔ)充完整;

(3)求扇形統(tǒng)計(jì)圖中“A”所在扇形圓心角的度數(shù).

查看答案和解析>>

同步練習(xí)冊(cè)答案