【題目】如圖,點(diǎn)是反比例函數(shù)圖像上一點(diǎn),作軸于點(diǎn),且的面積為,點(diǎn)坐標(biāo)為

)求的值.

)若直線經(jīng)過點(diǎn),交另一支雙曲線于點(diǎn),求的面積.

)指出取何值時(shí),一次函數(shù)的值大于反比例函數(shù)的值,直接寫出結(jié)果.

【答案】 .(.(

【解析】試題分析:1)根據(jù)的面積求出A點(diǎn)的坐標(biāo),然后根據(jù)A點(diǎn)坐標(biāo)確定出反比例函數(shù)的解析式即可.
2)將分成兩部分進(jìn)行求解.先根據(jù)直線AC的解析式經(jīng)過點(diǎn)A求出的值,再求出M的坐標(biāo),即可得出OM的長(zhǎng),然后根據(jù)A、C的縱坐標(biāo)即可求出的面積;
3)由圖象,根據(jù)的橫坐標(biāo)即可得出答案.

試題解析:

)在中, ,

,

,

,

代入,

,

)將代入,

解得, ,

,

設(shè)軸交于點(diǎn),則

,

)由圖像可知一次函數(shù)大于反比例函數(shù)時(shí),

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】問題情景:如圖1,ABCD,PAB=140°,PCD=135°,求∠APC的度數(shù).

(1)麗麗同學(xué)看過圖形后立即口答出:∠APC=85°,請(qǐng)你補(bǔ)全她的推理依據(jù).

如圖2,過點(diǎn)PPEAB,

ABCD,PECD. (   

∴∠A+APE=180°.

C+CPE=180°. (   

∵∠PAB=140°,PCD=135°,

∴∠APE=40°,CPE=45°

∴∠APC=APE+CPE=85°.(   

問題遷移:

(2)如圖3,ADBC,當(dāng)點(diǎn)PA、B兩點(diǎn)之間運(yùn)動(dòng)時(shí),∠ADP=α,BCP=β,求∠CPD與∠α、β之間有何數(shù)量關(guān)系?請(qǐng)說明理由.

(3)在(2)的條件下,如果點(diǎn)PA、B兩點(diǎn)外側(cè)運(yùn)動(dòng)時(shí)(點(diǎn)P與點(diǎn)A、B、O三點(diǎn)不重合),請(qǐng)你直接寫出∠CPD與∠α、β之間的數(shù)量關(guān)系.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,BDGE,AQ 平分∠FAC,交 BD Q,GFA=50°,Q=25°,則∠ACB 度數(shù)( )

A. 90° B. 95° C. 100° D. 105°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖已知 MNPQ,B MN 上,C PQ 上,A B 的左側(cè),D C 的右側(cè),DE 平分∠ADC,BE平分∠ABC,直線 DE,BE 交于點(diǎn) E,CBN=120°.

(1)若∠ADQ=110°,求∠BED 的度數(shù);

(2)將線段 AD 沿 DC 方向平移,使得點(diǎn) D 在點(diǎn) C 的左側(cè),其他條件不變,若∠ADQ=n°,求∠BED 的度數(shù)(用含 n 的代數(shù)式表示)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,動(dòng)點(diǎn)P在平面直角坐標(biāo)系中按圖中箭頭所示方向運(yùn)動(dòng),第1次從原點(diǎn)運(yùn)動(dòng)到點(diǎn)(1,1),第2次接著運(yùn)動(dòng)到點(diǎn)(2,0),第3次接著運(yùn)動(dòng)到點(diǎn)(3,2),…,按這樣的運(yùn)動(dòng)規(guī)律,經(jīng)過第2011次運(yùn)動(dòng)后,動(dòng)點(diǎn)P的坐標(biāo)是____________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABCD中,AB=6,AD=9,∠BAD的平分線交BC于點(diǎn)E,交DC的延長(zhǎng)線于點(diǎn)F,BG⊥AE,垂足為G,BG= ,則△CEF的周長(zhǎng)為(
A.8
B.9.5
C.10
D.11.5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我們給出如下定義:若一個(gè)四邊形中存在相鄰兩邊的平方和等于一條對(duì)角線的平方,則稱這個(gè)四邊形為勾股四邊形,這兩條相鄰的邊稱為這個(gè)四邊形的勾股邊.

(1)如圖①,已知格點(diǎn)(小正方形的頂點(diǎn))O(0,0),A(3,0),B(0,4),請(qǐng)你畫出以格點(diǎn)為頂點(diǎn),OA,OB為勾股邊且對(duì)角線相等的勾股四邊形OAMB;

  

(2)如圖②,將△ABC繞頂點(diǎn)B按順時(shí)針方向旋轉(zhuǎn)60°,得到△DBE,連接AD,DC,∠DCB=30°,求證:DC2+BC2=AC2,即四邊形ABCD是勾股四邊形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列說法不正確的是( )
A.某種彩票中獎(jiǎng)的概率是 ,買1000張?jiān)摲N彩票一定會(huì)中獎(jiǎng)
B.了解一批電視機(jī)的使用壽命適合用抽樣調(diào)查
C.若甲組數(shù)據(jù)的標(biāo)準(zhǔn)差S=0.31,乙組數(shù)據(jù)的標(biāo)準(zhǔn)差S=0.25,則乙組數(shù)據(jù)比甲組數(shù)據(jù)穩(wěn)定
D.在一個(gè)裝有白球和綠球的袋中摸球,摸出黑球是不可能事件

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為提高居民的節(jié)水意識(shí),向陽小區(qū)開展了建設(shè)節(jié)水型社區(qū),保障用水安全為主題的節(jié)水宣傳活動(dòng).小瑩同學(xué)積極參與小區(qū)的宣傳活動(dòng),并對(duì)小區(qū)300戶家庭用水情況進(jìn)行了抽樣調(diào)查.她在300戶家庭中隨機(jī)調(diào)查了50戶家庭5月份的用水量,結(jié)果如圖所示.把圖中每組用水量的值用該組的中間值(06的中間值為3)來代替,估計(jì)該小區(qū)5月份的用水量.

查看答案和解析>>

同步練習(xí)冊(cè)答案