【題目】直線AB與⊙O相切于B點,C是⊙O與OA的交點,點D是⊙O上的動點(D與B,C不重合),若∠A=40°,則∠BDC的度數是( 。
A.25°或155°
B.50°或155°
C.25°或130°
D.50°或130°
科目:初中數學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,點D在AB上,AD=AC,AF⊥CD交CD于點E,交CB于點F,則CF的長是________________.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在數軸上,點A表示數a,點B表示數b,在學習絕對值時,我們知道了絕對值的幾何含義:
數軸上A、B之間的距離記作|AB|,定義:|AB|=|a﹣b|.如:|a+6|表示數a和﹣6在數軸上對應的兩點之間的距離.|a﹣1|表示數a和1在數軸上對應的兩點之間的距離.
(1)若a滿足|a+6|+|a+4|+|a﹣1|的值最小,b與3a互為相反數,直接寫出點A對應的數 ,點B對應的數 .
(2)在(1)的條件下,已知點E從點A出發(fā)以1單位/秒的速度向右運動,同時點F從點B出發(fā)以2單位/秒的速度向右運動,FO的中點為點P,則下列結論:①PO+AE的值不變;②PO﹣AE的值不變,其中有且只有一個是正確的,選出來并求其值.
(3)在(1)的條件下,已知動點M從A點出發(fā)以1單位/秒的速度向左運動,動點N從B點出發(fā)以3單位/秒的速度向左運動,動點T從原點的位置出發(fā)以x單位/秒的速度向左運動,三個動點同時出發(fā),若運動過程中正好先后出現兩次TM=TN的情況,且兩次間隔的時間為4秒,求滿足條件的x的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,四邊形ABCD為等腰梯形,AD∥BC,連結AC、BD.在平面內將△DBC沿BC翻折得到△EBC.
(1)四邊形ABEC一定是什么四邊形?
(2)證明你在(1)中所得出的結論.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某校九年級為建立學習興趣小組,對語文、數學、英語、物理、化學、思想品德、歷史、綜合共八個科目的喜歡情況進行問卷調查(每人只選一項),下表是隨機抽取部分學生的問卷進行統(tǒng)計的結果:
科目 | 語文 | 數學 | 英語 | 物理 | 化學 | 思想品德 | 歷史 | 綜合 |
人數 | 6 | 10 | 11 | 12 | 10 | 9 | 8 | 14 |
根據表中信息,解答下列問題:
(1)本次隨機抽查的學生共有人;
(2)本次隨機抽查的學生中,喜歡科目的人數最多;
(3)根據上表中的數據補全條形統(tǒng)計圖;
(4)如果該校九年級有600名學生,那么估計該校九年級喜歡綜合科目的學生有多少人.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,D是△ABC的邊AB上一點,CN∥AB,DN交AC于點M,若MA=MC.
(1)求證:CD=AN;
(2)若AC⊥DN,∠CAN=30°,MN=1,求四邊形ADCN的面積.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,點A(a,1)、B(﹣1,b)都在雙曲線y=﹣ 上,點P、Q分別是x軸、y軸上的動點,當四邊形PABQ的周長取最小值時,PQ所在直線的解析式是( 。
A.y=x
B.y=x+1
C.y=x+2
D.y=x+3
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com