【題目】某校九年級(jí)為建立學(xué)習(xí)興趣小組,對(duì)語(yǔ)文、數(shù)學(xué)、英語(yǔ)、物理、化學(xué)、思想品德、歷史、綜合共八個(gè)科目的喜歡情況進(jìn)行問(wèn)卷調(diào)查(每人只選一項(xiàng)),下表是隨機(jī)抽取部分學(xué)生的問(wèn)卷進(jìn)行統(tǒng)計(jì)的結(jié)果:

科目

語(yǔ)文

數(shù)學(xué)

英語(yǔ)

物理

化學(xué)

思想品德

歷史

綜合

人數(shù)

6

10

11

12

10

9

8

14


根據(jù)表中信息,解答下列問(wèn)題:
(1)本次隨機(jī)抽查的學(xué)生共有人;
(2)本次隨機(jī)抽查的學(xué)生中,喜歡科目的人數(shù)最多;
(3)根據(jù)上表中的數(shù)據(jù)補(bǔ)全條形統(tǒng)計(jì)圖;
(4)如果該校九年級(jí)有600名學(xué)生,那么估計(jì)該校九年級(jí)喜歡綜合科目的學(xué)生有多少人.

【答案】
(1)解:隨機(jī)抽查的學(xué)生數(shù)是:6+10+11+12+10+9+8+14=80(人);
故答案為:80.
(2)解:根據(jù)統(tǒng)計(jì)表可得:喜歡綜合科目的人數(shù)最多;
故答案為:綜合;
(3)

解:根據(jù)統(tǒng)計(jì)表可知,喜歡思想品德的有9人,補(bǔ)圖如下:


(4)

解:估計(jì)該校九年級(jí)喜歡綜合科目的學(xué)生有: ×600=105(人);

故答案為:105.


【解析】(1)把統(tǒng)計(jì)表中的數(shù)據(jù)加起來(lái),即可求出次隨機(jī)抽查的人數(shù);(2)在統(tǒng)計(jì)表中找出人數(shù)最多的數(shù),即可求出答案;(3)根據(jù)統(tǒng)計(jì)表可知,喜歡思想品德的有9人,從而補(bǔ)全統(tǒng)計(jì)圖;(4)根據(jù)抽查的綜合科目的人數(shù)除以抽查的總?cè)藬?shù),再乘以600,即可求出該校九年級(jí)喜歡綜合科目的學(xué)生數(shù).
【考點(diǎn)精析】掌握統(tǒng)計(jì)表和條形統(tǒng)計(jì)圖是解答本題的根本,需要知道制作統(tǒng)計(jì)表的步驟:(1)收集整理數(shù)據(jù).(2)確定統(tǒng)計(jì)表的格式和欄目數(shù)量,根據(jù)紙張大小制成表格.(3)填寫(xiě)欄目、各項(xiàng)目名稱及數(shù)據(jù).(4)計(jì)算總計(jì)和合計(jì)并填入表中,一般總計(jì)放在橫欄最左格,合計(jì)放在豎欄最上格.(5)寫(xiě)好表格名稱并標(biāo)明制表時(shí)間;能清楚地表示出每個(gè)項(xiàng)目的具體數(shù)目,但是不能清楚地表示出各個(gè)部分在總體中所占的百分比以及事物的變化情況.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,在⊙O中, = ,弦AB與弦AC交于點(diǎn)A,弦CD與AB交于點(diǎn)F,連接BC.
(1)求證:AC2=ABAF;
(2)若⊙O的半徑長(zhǎng)為2cm,∠B=60°,求圖中陰影部分面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】閱讀并填空:

尋求某些勾股數(shù)的規(guī)律:

⑴對(duì)于任何一組已知的勾股數(shù)都擴(kuò)大相同的正整數(shù)倍后,就得到了一組新的勾股數(shù).例如:,我們把它擴(kuò)大2倍、3倍,就分別得到,……若把它擴(kuò)大11倍,就得到 ,若把它擴(kuò)大n倍,就得到

⑵對(duì)于任意一個(gè)大于1的奇數(shù),存在著下列勾股數(shù):

若勾股數(shù)為3,4,5,因?yàn),則有;

若勾股數(shù)為5,12,13,則有;

若勾股數(shù)為7,24,25,則有 ;……

若勾股數(shù)為m(m為奇數(shù)),n, ,則有m2= ,用m來(lái)表示n= ;

當(dāng)m=17時(shí),則n= ,此時(shí)勾股數(shù)為

⑶對(duì)于大于4的偶數(shù):

若勾股數(shù)為6,8,10,因?yàn)?/span>,則有……請(qǐng)找出這些勾股數(shù)之間的關(guān)系,并用適當(dāng)?shù)淖帜副硎境鏊囊?guī)律來(lái),并求當(dāng)偶數(shù)為24的勾股數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在△ABC中,∠BAC=90°,AB=3,AC=4,AD平分∠BAC交BC于D,則BD的長(zhǎng)為( 。
A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象經(jīng)過(guò)點(diǎn)(1,0),(5,0),(3,﹣4).

(1)求該二次函數(shù)的解析式;
(2)A、B為直線y=﹣2x﹣6上兩動(dòng)點(diǎn),且距離為2,點(diǎn)C為二次函數(shù)圖象上的動(dòng)點(diǎn),當(dāng)點(diǎn)C運(yùn)動(dòng)到何處時(shí)△ABC的面積最?求出此時(shí)點(diǎn)C的坐標(biāo)及△ABC面積的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】直線AB與⊙O相切于B點(diǎn),C是⊙O與OA的交點(diǎn),點(diǎn)D是⊙O上的動(dòng)點(diǎn)(D與B,C不重合),若∠A=40°,則∠BDC的度數(shù)是( 。
A.25°或155°
B.50°或155°
C.25°或130°
D.50°或130°

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:⊙O的直徑為3,線段AC=4,直線AC和PM分別與⊙O相切于點(diǎn)A,M.

(1)求證:點(diǎn)P是線段AC的中點(diǎn);
(2)求sin∠PMC的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在“美麗廣西,清潔鄉(xiāng)村”活動(dòng)中,李家村村長(zhǎng)提出了兩種購(gòu)買(mǎi)垃圾桶方案;方案1:買(mǎi)分類(lèi)垃圾桶,需要費(fèi)用3000元,以后每月的垃圾處理費(fèi)用250元;方案2:買(mǎi)不分類(lèi)垃圾桶,需要費(fèi)用1000元,以后每月的垃圾處理費(fèi)用500元;設(shè)方案1的購(gòu)買(mǎi)費(fèi)和每月垃圾處理費(fèi)共為y1元,交費(fèi)時(shí)間為x個(gè)月;方案2的購(gòu)買(mǎi)費(fèi)和每月垃圾處理費(fèi)共為y2元,交費(fèi)時(shí)間為x個(gè)月.
(1)直接寫(xiě)出y1、y2與x的函數(shù)關(guān)系式;
(2)在同一坐標(biāo)系內(nèi),畫(huà)出函數(shù)y1、y2的圖象;

(3)在垃圾桶使用壽命相同的情況下,哪種方案省錢(qián)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,MN是一條東西朝向的筆直的公路,C是位于該公路上的一個(gè)檢測(cè)點(diǎn)輛長(zhǎng)為9m的小貨車(chē)BD行駛在該公路上小王位于點(diǎn)A處觀察小貨車(chē),某時(shí)刻他發(fā)現(xiàn)車(chē)頭D、車(chē)尾B及檢測(cè)點(diǎn)C分別距離他10m、17m,2m

(1)過(guò)點(diǎn)AMN引垂線,垂足為E,請(qǐng)利用勾股定理分別找出線段AEDE、AEBE之間所滿足的數(shù)量關(guān)系;

(2)在上一問(wèn)的提示下,繼續(xù)完成下列問(wèn)題:

求線段DE的長(zhǎng)度;

該小貨車(chē)的車(chē)頭D距離檢測(cè)點(diǎn)C還有多少m?

查看答案和解析>>

同步練習(xí)冊(cè)答案