【題目】如圖,在△ABC中,∠BAC=90°,∠B=45°,BC=10 cm,過點A作AD∥BC,且點D在點A的右側.點P從點A出發(fā)沿射線AD方向以每秒1cm的速度運動,同時點Q從點C出發(fā)沿射線CB方向以每秒2cm的速度運動,在線段QC上取點E,使得QE =2cm,連結PE,設點P的運動時間為t秒.
(1)若PE⊥BC,則①PE= cm,CE= (用含t的式子表示);
②求BQ的長;
(2)請問是否存在t的值,使以A,B,E,P為頂點的四邊形為平行四邊形?若存在,求出t的值;若不存在,請說明理由。
【答案】(1)①5,2t -2;②BQ=;(2)存在t的值,使以A,B,E,P為頂點的四邊形為平行四邊形,t=4或12 s.
【解析】試題分析:(1)①作AM⊥BC于M,由已知條件得出AB=AC,由等腰三角形的性質得出BM=CM,由直角三角形斜邊上的中線性質得出AM=BC=5,從而得出PE的長,由CQ=2t,QE=2,得到CE的長;
②證出△APN和△CEN是等腰直角三角形,得出PN=AP=t,CE=NE=5﹣t,由CE=CQ﹣QE=2t﹣2得出方程,解方程即可;
(2)由平行四邊形的判定得出AP=BE,得出方程,解方程即可.
試題解析:解:(1)①作AM⊥BC于M.∵∠BAC=90°,∠B=45°,∴∠C=45°=∠B,∴AB=AC,∴BM=CM,∴AM=BC=5.∵PE⊥BC,∴PE=AM=5.∵AP=t,CQ=2t,∴CE=2t-2.
②由①可知:AM=BC=5.∵AD∥BC,∴∠PAN=∠C=45°.∵PE⊥BC,∴PE=AM=5,PE⊥AD,∴△APN和△CEN是等腰直角三角形,∴PN=AP=t,CE=NE=5﹣t.∵CE=CQ﹣QE=2t﹣2,∴5﹣t=2t﹣2,解得:t=,所以BQ=BC﹣CQ=10﹣2×=;
(2)存在,t=4;理由如下:
若以A,B,E,P為頂點的四邊形為平行四邊形,則AP=BE,∴t=10﹣2t+2或t=2t﹣2﹣10
解得:t=4或12,∴存在t的值,使以A,B,E,P為頂點的四邊形為平行四邊形,t=4或12.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,矩形ABCD中,BC=2AB=4,AE平分∠BAD交邊BC于點E,∠AEC的分線交AD于點F,以點D為圓心,DF為半徑畫圓弧交邊CD于點G,求弧FG的長
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,⊙O的半徑OC=5cm,直線l⊥OC,垂足為H,且l交⊙O于A、B兩點,AB=8cm,求l沿OC所在直線向下平移多少cm時與⊙O相切.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖17-Z-11,小紅同學要測量A,C兩地的距離,但A,C之間有一水池,不能直接測量,于是她在A,C同一水平面上選取了一點B,點B可直接到達A,C兩地.她測量得到AB=80米,BC=20米,∠ABC=120°.請你幫助小紅同學求出A,C兩地之間的距離.(結果精確到1米,參考數(shù)據(jù): ≈4.6)
圖17-Z-11
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知某開發(fā)區(qū)有一塊四邊形的空地ABCD,如圖所示,現(xiàn)計劃在空地上種植草皮,經(jīng)測量∠A=90°,AB=3m,BC=12m,CD=13m,DA=4m,若每平方米草皮需要200元,問要多少投入?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】威麗商場銷售A、B兩種商品,售出1件A種商品和4件B種商品所得利潤為600元;售出3件A種商品和5件B種商品所得利潤為1100元.
(1)求每件A種商品和每件B種商品售出后所得利潤分別為多少元?
(2)由于需求量大,A、B兩種商品很快售完,威麗商場決定再一次購進A、B兩種商品共34件,如果將這34件商品全部售完后所得利潤不低于4000元,那么威麗商場至少需購進多少件A種商品?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠BAC=90°,∠B=60°,△AB′C′可以由△ABC繞點A順時針旋轉90°得到(點B′與點B是對應點,點C′與點C是對應點),連接CC′,則∠CC′B′的度數(shù)是( 。
A.45°
B.30°
C.25°
D.15°
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示的坐標系中,△ABC的三個頂點的坐標依次為A(﹣1,2),B(﹣4,1),C(﹣2,﹣2)
(1)請寫出△ABC關于x軸對稱的點A1、B1、C1的坐標;
(2)請在這個坐標系中作出△ABC關于y軸對稱的△A2B2C2;
(3)計算:△A2B2C2的面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com