【題目】已知四邊形ABCD中,∠ABC+∠ADC=180,連接AC,BD.
(1)如圖1,當(dāng)∠ACD=∠CAD=45時,求∠CBD的度數(shù);
(2)如圖2,當(dāng)∠ACD=∠CAD=60時,求證:AB+BC=BD;
(3)如圖3,在(2)的條件下,過點C作CK⊥BD于點K,在AB的延長線上取點F,使∠FCG=60,過點F作FH⊥BD于點H,BD=8,AB=5,GK=,求BH的長。
【答案】(1)45°
(2)見解析
(3)
【解析】
(1)根據(jù)已知條件得到A,B,C,D四點共圓,根據(jù)圓周角定理即可得到結(jié)論;
(2)在BD截取BE=AB,連接CE,根據(jù)圓周角定理得到∠ABD=∠ACD=60°,推出△ABE是等邊三角形,△ACD是等邊三角形,根據(jù)全等三角形的性質(zhì)即可得到結(jié)論;
(3)根據(jù)圓周角定理得到∠CBD=∠ABC=∠CAD=60°,解直角三角形得到BK=,,CK=,DK=,由勾股定理得到CD=7,求得AC=CD=7,根據(jù)相似三角形的性質(zhì)得到AF=,BF=,解直角三角形即可得到結(jié)論.
(1) ∵∠ABC+∠ADC=180,
∴A,B,C,D四點共圓,
∵∠ACD=∠CAD=45,
∴∠CBD=∠CAD=45;
(2) 在BD截取BE=AB,連接CE,
∵∠ABC+∠ADC=180,
∴A,B,C,D四點共圓,
∴∠ABD=∠ACD=60,
∴△ABE是等邊三角形,
∴AB=BE=AE,
∵∠ACD=∠CAD=60,
∴△ACD是等邊三角形,
∴AC=AD,∠CAD=∠BAE=60,
∴∠BAC=∠DAE,
在△ABC與△ADE中,
∴△ABC≌△AED,
∴BC=DE,
∵BD=BE+DE,
∴BD=BC+AB;
(3)∵BD=8,AB=5,
∴BC=3,
∵A,B,C,D四點共圓,
∴∠CBD=∠ABC=∠CAD=60,
∵CK⊥BD,
∴BK=BC=,CK=,
∴DK=,
∴CD==7
∴AC=CD=7,
∵∠FCG=60,
∴∠FCG=∠CBD,
∵A,B,C,D四點共圓,
∴∠BAC=∠CDB,
∴△AFC∽△DCB,
∴,
∴AF=,
∴BF=,
∵∠FBH=∠ABD=60,
∵FH⊥BD,
∴BH=BF=.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知直線l1:y=x-3與x軸,y軸分別交于點A和點B.
(1)求點A和點B的坐標(biāo);
(2)將直線l1向上平移6個單位后得到直線l2,求直線l2的函數(shù)解析式;
(3)設(shè)直線l2與x軸的交點為M,則△MAB的面積是______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠A=36°,∠C=72°,點D在AC上,BC=BD,DE∥BC交AB于點E,則圖中等腰三角形共有( )
A. 3個B. 4個C. 5個D. 6個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】二次函數(shù)y=ax2+bx+c(a≠0)的大致圖象如圖,關(guān)于該二次函數(shù),下列說法錯誤的是( )
A. 函數(shù)有最小值
B. 對稱軸是直線x=
C. 當(dāng)x<,y隨x的增大而減小
D. 當(dāng)﹣1<x<2時,y>0
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點A在第二象限,以A為頂點的拋物線經(jīng)過原點,與x軸負半軸交于點B,對稱軸為直線x=-2,點C在拋物線上,且位于點A、B之間(C不與A、B重合).若△ABC的周長為a,則四邊形AOBC的周長為________(用含a的式子表示).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,OA=OB=OC=6,過點A的直線AD交BC于點D,交y軸與點G,△ABD的面積為△ABC面積的.
(1)求點D的坐標(biāo);
(2)過點C作CE⊥AD,交AB交于F,垂足為E.
①求證:OF=OG;
②求點F的坐標(biāo)。
(3)在(2)的條件下,在第一象限內(nèi)是否存在點P,使△CFP為等腰直角三角形?若存在,直接寫出點P坐標(biāo);若不存在,請說明理由。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC和△DCE中,CA=CB,CD=CE,∠CAB= ∠CED=α.
(1)如圖1,將AD、EB延長,延長線相交于點0.
①求證:BE= AD;
②用含α的式子表示∠AOB的度數(shù)(直接寫出結(jié)果);
(2)如圖2,當(dāng)α=45°時,連接BD、AE,作CM⊥AE于M點,延長MC與BD交于點N.求證:N是BD的中點.
注:第(2)問的解答過程無需注明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線y=-2x與直線y=kx+b相交于點A(a,2),并且直線y=kx+b經(jīng)過x軸上點B(2,0).
(1)求直線y=kx+b的解析式;
(2)求兩條直線與y軸圍成的三角形面積;
(3)直接寫出不等式(k+2)x+b≥0的解集.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在ABCD中,DE⊥AB,BF⊥CD,垂足分別為E,F(xiàn).
(1)求證:△ADE≌△CBF;
(2)求證:四邊形BFDE為矩形.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com