【題目】在△ABC中,∠A=90°,AB=4,AC=3,M是AB上的動(dòng)點(diǎn)(不與A,B重合),過M點(diǎn)作MN∥BC交AC于點(diǎn)N.以MN為直徑作⊙O,并在⊙O內(nèi)作內(nèi)接矩形AMPN.令A(yù)M=x.
(1)用含x的代數(shù)式表示△MNP的面積S;
(2)當(dāng)x為何值時(shí),⊙O與直線BC相切;
(3)在動(dòng)點(diǎn)M的運(yùn)動(dòng)過程中,記△MNP與梯形BCNM重合的面積為y,試求y關(guān)于x的函數(shù)表達(dá)式,并求x為何值時(shí),y的值最大,最大值是多少?
【答案】
(1)
解:∵M(jìn)N∥BC,
∴∠AMN=∠B,∠ANM=∠C.
∴△AMN∽△ABC.
∴ ,即 ;
∴AN= x;
∴S=S△MNP=S△AMN= xx= x2.(0<x<4)
(2)
解:如圖2,設(shè)直線BC與⊙O相切于點(diǎn)D,連接AO,OD,則AO=OD= MN.
在Rt△ABC中,BC= =5;
由(1)知△AMN∽△ABC,
∴ ,即 ,
∴MN= x
∴OD= x,
過M點(diǎn)作MQ⊥BC于Q,則MQ=OD= x,
在Rt△BMQ與Rt△BCA中,∠B是公共角,
∴△BMQ∽△BCA,
∴ ,
∴BM= x,AB=BM+MA= x+x=4
∴x= ,
∴當(dāng)x= 時(shí),⊙O與直線BC相切
(3)
解:隨點(diǎn)M的運(yùn)動(dòng),當(dāng)P點(diǎn)落在直線BC上時(shí),連接AP,則O點(diǎn)為AP的中點(diǎn).
∵M(jìn)N∥BC,
∴∠AMN=∠B,∠AOM=∠APB,
∴△AMO∽△ABP,
∴ ,
∵AM=MB=2,
故以下分兩種情況討論:
①當(dāng)0<x≤2時(shí),y=S△PMN= x2,
∴當(dāng)x=2時(shí),y最大= ×4= ,
②當(dāng)2<x<4時(shí),設(shè)PM,PN分別交BC于E,F(xiàn),
∵四邊形AMPN是矩形,
∴PN∥AM,PN=M=x,
又∵M(jìn)N∥BC,
∴四邊形MBFN是平行四邊形;
∴FN=BM=4﹣x,
∴PF=x﹣(4﹣x)=2x﹣4,
又∵△PEF∽△ACB,
∴ ,
∴S△PEF= (x﹣2)2;
y=S△MNP﹣S△PEF= x2﹣ (x﹣2)2=﹣ x2+6x﹣6,
當(dāng)2<x<4時(shí),y=﹣ x2+6x﹣6=﹣ (x﹣ )2+2,
∴當(dāng)x= 時(shí),滿足2<x<4,y最大=2.
綜上所述,當(dāng)x= 時(shí),y值最大,最大值是2
【解析】(1)由于三角形PMN和AMN的面積相當(dāng),那么可通過求三角形AMN的面積來得出三角形PMN的面積,求三角形AMN的面積可根據(jù)三角形AMN和ABC相似,根據(jù)相似比的平方等于面積比來得出三角形AMN的面積;(2)當(dāng)圓O與BC相切時(shí),O到BC的距離就是MN的一半,那么關(guān)鍵是求出MN的表達(dá)式,可根據(jù)三角形AMN和三角形ABC相似,得出MN的表達(dá)式,也就求出了O到BC的距離的表達(dá)式,如果過M作MQ⊥BC于Q,那么MQ就是O到BC的距離,然后在直角三角形BMQ中,用∠B的正弦函數(shù)以及BM的表達(dá)式表示出MQ,然后讓這兩表示MQ的含x的表達(dá)式相等,即可求出x的值;(3)要求重合部分的面積首先看P點(diǎn)在三角形ABC內(nèi)部還是外面,因此可先得出這兩種情況的分界線即當(dāng)P落到BC上時(shí),x的取值,那么P落點(diǎn)BC上時(shí),MN就是三角形ABC的中位線,此時(shí)AM=2,因此可分兩種情況進(jìn)行討論:
①當(dāng)0<x≤2時(shí),此時(shí)重合部分的面積就是三角形PMN的面積,三角形PMN的面積(1)中已經(jīng)求出,即可的x,y的函數(shù)關(guān)系式.②當(dāng)2<x<4時(shí),如果設(shè)PM,PN交BC于E,F(xiàn),那么重合部分就是四邊形MEFN,可通過三角形PMN的面積﹣三角形PEF的面積來求重合部分的面積.不難得出PN=AM=x,而四邊形BMNF又是個(gè)平行四邊形,可得出FN=BM,也就有了FN的表達(dá)式,就可以求出PF的表達(dá)式,然后參照(1)的方法可求出三角形PEF的面積,即可求出四邊形MEFN的面積,也就得出了y,x的函數(shù)關(guān)系式.然后根據(jù)兩種情況得出的函數(shù)的性質(zhì),以及對(duì)應(yīng)的自變量的取值范圍求出y的最大值即可.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,M是△ABC的邊BC的中點(diǎn),AN平分∠BAC,BN⊥AN于點(diǎn)N,延長(zhǎng)BN交AC于點(diǎn)D,已知AB=10,BC=15,MN=3
(1)求證:BN=DN;
(2)求△ABC的周長(zhǎng)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB為⊙O直徑,BC為⊙O切線,連接A、C兩點(diǎn),交⊙O于點(diǎn)D,BE=CE,連接DE,OE.
(1)判斷DE與⊙O的位置關(guān)系,并說明理由;
(2)求證:BC2=CD2OE;
(3)若cos∠BAD= ,BE=6,求OE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,把矩形紙片ABCD沿EF折疊,使點(diǎn)B落在邊AD上的點(diǎn)B′處,點(diǎn)A落在點(diǎn)A′處,已知AD=10,CD=4,B′D=2.
(1)求證:B′E=BF;
(2)求AE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,E. F. G、H分別是邊AB、BC、CD、DA的中點(diǎn).
(1)判斷四邊形EFGH的形狀,并說明你的理由;
(2)連接BD和AC,當(dāng)BD、AC滿足何條件時(shí),四邊形EFGH是正方形?證明你的理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】解決問題:
一輛貨車從超市出發(fā),向東走了3千米到達(dá)小彬家,繼續(xù)走2.5千米到達(dá)小穎家,然后向西走了10千米到達(dá)小明家,最后回到超市.
(1)以超市為原點(diǎn),以向東的方向?yàn)檎较,?/span>1個(gè)單位長(zhǎng)度表示1千米,在數(shù)軸上表示出小明家,小彬家,小穎家的位置.
(2)小明家距小彬家多遠(yuǎn)?
(3)貨車一共行駛了多少千米?
(4)貨車每千米耗油0.2升,這次共耗油多少升?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小米是一個(gè)愛動(dòng)腦筋的孩子,他用如下方法作∠AOB的角平分線: 作法:如圖,
⑴在射線OA上任取一點(diǎn)C,過點(diǎn)C作CD∥OB;
⑵以點(diǎn)C為圓心,CO的長(zhǎng)為半徑作弧,交CD于點(diǎn)E;
⑶作射線OE.
所以射線OE就是∠AOB的角平分線.請(qǐng)回答:小米的作圖依據(jù)是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了響應(yīng)市委和市政府“綠色環(huán)保,節(jié)能減排”的號(hào)召,幸福商場(chǎng)用3300元購(gòu)進(jìn)甲、乙兩種節(jié)能燈共計(jì)100只,很快售完.這兩種節(jié)能燈的進(jìn)價(jià)、售價(jià)如下表:
進(jìn)價(jià)(元/只) | 售價(jià)(元/只) | |
甲種節(jié)能燈 | 30 | 40 |
甲種節(jié)能燈 | 35 | 50 |
(1)求幸福商場(chǎng)甲、乙兩種節(jié)能燈各購(gòu)進(jìn)了多少只?
(2)全部售完100只節(jié)能燈后,商場(chǎng)共計(jì)獲利多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線y=ax2+bx+c的頂點(diǎn)為D(﹣1,2),其部分圖象如圖所示,給出下列四個(gè)結(jié)論: ①a<0; ②b2﹣4ac>0;③2a﹣b=0;④若點(diǎn)P(x0 , y0)在拋物線上,則ax02+bx0+c≤a﹣b+c.其中結(jié)論正確的是( )
A.1個(gè)
B.2個(gè)
C.3個(gè)
D.4個(gè)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com