已知如圖DE是△ABC的中位線,AF是BC邊上的中線,DE、AF交于點(diǎn)O,F(xiàn)有以下結(jié)論:①DE∥BC;②OD=BC;③AO=FO;④。其中正確結(jié)論的個(gè)數(shù)為(  )
A.1B.2 C.3D.4
C.

試題分析:∵DE是△ABC的中位線,
∴DE∥BC;DE=BC;
故結(jié)論①正確;
∵AF是BC邊上的中線,
∴AO是DE邊上的中線,
∴DO=DE=
故結(jié)論②正確;
∵DE∥BC

又AD=DB
∴AO=OF
故結(jié)論③正確;
根據(jù)題意知


故結(jié)論④錯(cuò)誤
故選C.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知:如圖,E是AC上一點(diǎn),AB=CE,AB∥CD,∠ACB =∠D.求證:BC =ED.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知:如圖, AB是⊙O的直徑,AM和BN是⊙O的兩條切線,點(diǎn)D是AM上一點(diǎn),聯(lián)結(jié)OD , 作BE∥OD交⊙O于點(diǎn)E, 聯(lián)結(jié)DE并延長交BN于點(diǎn)C.
(1)求證:DC是⊙O的切線;
(2)若AD=l,BC=4,求直徑AB的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

問題:在△ABC中,AB=AC,∠A=100°,BD為∠B 的平分線,探究AD、BD、BC之間的數(shù)量關(guān)系.
請(qǐng)你完成下列探究過程:
(1)觀察圖形,猜想AD、BD、BC之間的數(shù)量關(guān)系為                        .
(2)在對(duì)(1)中的猜想進(jìn)行證明時(shí),當(dāng)推出∠ABC=∠C=40°后,可進(jìn)一步推出∠ABD=∠DBC=         度.
(3)為了使同學(xué)們順利地解答本題(1)中的猜想,小強(qiáng)同學(xué)提供了一種探究的思路:在BC上截取BE=BD,連接DE,在此基礎(chǔ)上繼續(xù)推理可使問題得到解決.你可以參考小強(qiáng)的思路,畫出圖形,在此基礎(chǔ)上對(duì)(1)中的猜想加以證明.也可以選用其它的方法證明你的猜想.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

閱讀下面材料:
小明遇到這樣一個(gè)問題: 如圖1,五個(gè)正方形的邊長都為1,將這五個(gè)正方形分割為四部分,再拼接為一個(gè)大正方形.
小明研究發(fā)現(xiàn):如圖2,拼接的大正方形的邊長為, “日”字形的對(duì)角線長都為,五個(gè)正方形被兩條互相垂直的線段AB,CD分割為四部分,將這四部分圖形分別標(biāo)號(hào),以CD為一邊畫大正方形,把這四部分圖形分別移入正方形內(nèi),就解決問題.
請(qǐng)你參考小明的畫法,完成下列問題:
(1)如圖3,邊長分別為a,b的兩個(gè)正方形被兩條互相垂直的線段AB,CD分割為四部分圖形,現(xiàn)將這四部分圖形拼接成一個(gè)大正方形,請(qǐng)畫出拼接示意圖
(2)如圖4,一個(gè)八角形紙板有個(gè)個(gè)角都是直角,所有的邊都相等,將這個(gè)紙板沿虛線分割為八部分,再拼接成一個(gè)正方形,如圖5所示,畫出拼接示意圖;若拼接后的正方形的面積為,則八角形紙板的邊長為         

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

在直徑為200cm的圓柱形油槽內(nèi)裝入一些油以后,截面如圖所示,若油面的寬AB=160cm,則油的最大深度為   (  )
A.40cmB.60cmC.80cmD.100cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,∠ACB>90°,AD^BC,BE^AC,CF^AB,垂足分別為點(diǎn)D、點(diǎn)E、點(diǎn)F,△ABC中BC邊上的高是(    )

A.CF ;    B.BE;     C.AD;       D.CD;

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,點(diǎn)P是正方形ABCD的對(duì)角線BD上的一個(gè)動(dòng)點(diǎn)(不與B、D重合),連結(jié)AP,過點(diǎn)B作直線AP的垂線,垂足為H,連結(jié)DH,若正方形的邊長為4,則線段DH長度的最小值是     

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知⊙O的直徑AB與弦CD互相垂直,垂足為點(diǎn)E.⊙O的切線BF與弦AC的延長線相交于點(diǎn) F,且AC=8,tan∠BDC=
 
(1)求⊙O的半徑長;
(2)求線段CF長.

查看答案和解析>>

同步練習(xí)冊(cè)答案