【題目】如圖,矩形ABCD的兩個頂點AB分別落在x、y軸上,頂點CD位于第一象限,且OA=3,OB=2,對角線AC、BD交于點G,若曲線y經過點CG,則k=__________.

【答案】

【解析】試題解析:如圖,分別過C、G兩點作x軸的垂線,交x軸于點E、F,

CEGF,

Cmn),

四邊形ABCD是矩形,

AG=CG

GF=CE,EF=(3-m),

OF=(3-m)+m=+m

G,),

曲線y=x>0)經過點C、G,

mn=×,

解得m=1,

CHy軸于H,

CH=1,

∵∠ABC=90°,

∴∠CBH+ABO=90°,

∵∠OAB+ABO=90°,

∴∠OAB=CBH,

∵∠AOB=BHC=90°,

∴△AOB∽△BHC,

,即,

BH=,

OH=+2=,

C(1,),

k=1×=

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】已知拋物線為任意實數(shù)經過下圖中兩點M1,-2)、N,0),其中M為拋物線的頂點N為定點.下列結論

若方程的兩根為, ),, ;

,函數(shù)值隨自變量的減小而減。

, .

垂直于軸的直線與拋物線交于C、D兩點,CD兩點的橫坐標分別為、=2

其中正確的是( )

A. ①② B. ①④ C. ②③ D. ②④

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某大型超市從生產基地購進一批水果,運輸過程中質量損失10%,假設不計超市其他費用,如果超市要想至少獲得20%的利潤,那么這種水果的售價在進價的基礎上應至少提高【 】

A.40% B.33.4% C.33.3% D.30%

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】等邊三角形ABC中,D、E分別是AB、BC上的點,且ADBE,AECD相交于點PCFAE

1)求∠CPE的度數(shù);

2)求證:PFPC

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(模型建立)

1)如圖1,等腰RtABC中,∠ACB90°,CBCA,直線ED經過點C,過點AADED于點D,過點BBEED于點E,求證:△BEC≌△CDA;

(模型應用)

2)如圖2,已知直線l1yx+3x軸交于點A,與y軸交于點B,將直線l1繞點A逆時針旋轉45°至直線l2;求直線l2的函數(shù)表達式;

3)如圖3,平面直角坐標系內有一點B3,﹣4),過點BBAx軸于點A、BCy軸于點C,點P是線段AB上的動點,點D是直線y=﹣2x+1上的動點且在第四象限內.試探究△CPD能否成為等腰直角三角形?若能,求出點D的坐標,若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1.直線AD∥EF,點B,C分別在EFAD上,∠A=∠ABC,BD平分∠CBF

1)求證:AB⊥BD;

2)如圖2,BG⊥AD于點G,求證:∠ACB=2∠ABG;

3)在(2)的條件下,如圖3,CH平分∠ACBBG于點H,設∠ABG=α,請直接寫出∠BHC的度數(shù).(用含α的式子表示)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,一次函數(shù)的圖象與反比例函數(shù)的圖象交于二、四象限內的A、B兩點,與x軸交于C點,點A的坐標為(- 3,4),點B的坐標為(6,n).

(1)求該反比例函數(shù)和一次函數(shù)的解析式;

(2)連接OB,求△AOB 的面積;

(3)在x軸上是否存在點P,使△APC是直角三角形. 若存在,求出點P的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在菱形ABCF中,∠ABC=60°,延長BA至點D,延長CB至點E,使BE=AD,連結CD,EA,延長EACD于點G

1)求證:ACE≌△CBD;

2)求∠CGE的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】綠水青山就是金山銀山,為保護生態(tài)環(huán)境,A,B兩村準備各自清理所屬區(qū)域養(yǎng)魚網箱和捕魚網箱,每村參加清理人數(shù)及總開支如下表:

村莊

清理養(yǎng)魚網箱人數(shù)/

清理捕魚網箱人數(shù)/

總支出/

A

15

9

57000

B

10

16

68000

(1)若兩村清理同類漁具的人均支出費用一樣,求清理養(yǎng)魚網箱和捕魚網箱的人均支出費用各是多少元;

(2)在人均支出費用不變的情況下,為節(jié)約開支,兩村準備抽調40人共同清理養(yǎng)魚網箱和捕魚網箱,要使總支出不超過102000元,且清理養(yǎng)魚網箱人數(shù)小于清理捕魚網箱人數(shù),則有哪幾種分配清理人員方案?

查看答案和解析>>

同步練習冊答案