【題目】如圖,矩形ABCD的兩個頂點A、B分別落在x、y軸上,頂點C、D位于第一象限,且OA=3,OB=2,對角線AC、BD交于點G,若曲線y經過點C、G,則k=__________.
科目:初中數(shù)學 來源: 題型:
【題目】已知拋物線(為任意實數(shù))經過下圖中兩點M(1,-2)、N(,0),其中M為拋物線的頂點,N為定點.下列結論:
①若方程的兩根為, (),則, ;
②當時,函數(shù)值隨自變量的減小而減。
③, , .
④垂直于軸的直線與拋物線交于C、D兩點,其C、D兩點的橫坐標分別為、,則=2 .
其中正確的是( )
A. ①② B. ①④ C. ②③ D. ②④
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某大型超市從生產基地購進一批水果,運輸過程中質量損失10%,假設不計超市其他費用,如果超市要想至少獲得20%的利潤,那么這種水果的售價在進價的基礎上應至少提高【 】
A.40% B.33.4% C.33.3% D.30%
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】等邊三角形ABC中,D、E分別是AB、BC上的點,且AD=BE,AE、CD相交于點P,CF⊥AE.
(1)求∠CPE的度數(shù);
(2)求證:PF=PC.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(模型建立)
(1)如圖1,等腰Rt△ABC中,∠ACB=90°,CB=CA,直線ED經過點C,過點A作AD⊥ED于點D,過點B作BE⊥ED于點E,求證:△BEC≌△CDA;
(模型應用)
(2)如圖2,已知直線l1:y=x+3與x軸交于點A,與y軸交于點B,將直線l1繞點A逆時針旋轉45°至直線l2;求直線l2的函數(shù)表達式;
(3)如圖3,平面直角坐標系內有一點B(3,﹣4),過點B作BA⊥x軸于點A、BC⊥y軸于點C,點P是線段AB上的動點,點D是直線y=﹣2x+1上的動點且在第四象限內.試探究△CPD能否成為等腰直角三角形?若能,求出點D的坐標,若不能,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1.直線AD∥EF,點B,C分別在EF和AD上,∠A=∠ABC,BD平分∠CBF.
(1)求證:AB⊥BD;
(2)如圖2,BG⊥AD于點G,求證:∠ACB=2∠ABG;
(3)在(2)的條件下,如圖3,CH平分∠ACB交BG于點H,設∠ABG=α,請直接寫出∠BHC的度數(shù).(用含α的式子表示)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,一次函數(shù)的圖象與反比例函數(shù)的圖象交于二、四象限內的A、B兩點,與x軸交于C點,點A的坐標為(- 3,4),點B的坐標為(6,n).
(1)求該反比例函數(shù)和一次函數(shù)的解析式;
(2)連接OB,求△AOB 的面積;
(3)在x軸上是否存在點P,使△APC是直角三角形. 若存在,求出點P的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在菱形ABCF中,∠ABC=60°,延長BA至點D,延長CB至點E,使BE=AD,連結CD,EA,延長EA交CD于點G.
(1)求證:△ACE≌△CBD;
(2)求∠CGE的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】“綠水青山就是金山銀山”,為保護生態(tài)環(huán)境,A,B兩村準備各自清理所屬區(qū)域養(yǎng)魚網箱和捕魚網箱,每村參加清理人數(shù)及總開支如下表:
村莊 | 清理養(yǎng)魚網箱人數(shù)/人 | 清理捕魚網箱人數(shù)/人 | 總支出/元 |
A | 15 | 9 | 57000 |
B | 10 | 16 | 68000 |
(1)若兩村清理同類漁具的人均支出費用一樣,求清理養(yǎng)魚網箱和捕魚網箱的人均支出費用各是多少元;
(2)在人均支出費用不變的情況下,為節(jié)約開支,兩村準備抽調40人共同清理養(yǎng)魚網箱和捕魚網箱,要使總支出不超過102000元,且清理養(yǎng)魚網箱人數(shù)小于清理捕魚網箱人數(shù),則有哪幾種分配清理人員方案?
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com