【題目】(模型建立)
(1)如圖1,等腰Rt△ABC中,∠ACB=90°,CB=CA,直線(xiàn)ED經(jīng)過(guò)點(diǎn)C,過(guò)點(diǎn)A作AD⊥ED于點(diǎn)D,過(guò)點(diǎn)B作BE⊥ED于點(diǎn)E,求證:△BEC≌△CDA;
(模型應(yīng)用)
(2)如圖2,已知直線(xiàn)l1:y=x+3與x軸交于點(diǎn)A,與y軸交于點(diǎn)B,將直線(xiàn)l1繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)45°至直線(xiàn)l2;求直線(xiàn)l2的函數(shù)表達(dá)式;
(3)如圖3,平面直角坐標(biāo)系內(nèi)有一點(diǎn)B(3,﹣4),過(guò)點(diǎn)B作BA⊥x軸于點(diǎn)A、BC⊥y軸于點(diǎn)C,點(diǎn)P是線(xiàn)段AB上的動(dòng)點(diǎn),點(diǎn)D是直線(xiàn)y=﹣2x+1上的動(dòng)點(diǎn)且在第四象限內(nèi).試探究△CPD能否成為等腰直角三角形?若能,求出點(diǎn)D的坐標(biāo),若不能,請(qǐng)說(shuō)明理由.
【答案】(1)見(jiàn)詳解;(2);(3)點(diǎn)D坐標(biāo)得(,)或(4,7)或(,).
【解析】
(1)由垂直的定義得∠ADC=∠CEB=90°,平角的定義和同角的余角的相等求出∠DAC=∠ECB,角角邊證明△CDA≌△BEC;
(2)證明△ABO≌∠BCD,求出點(diǎn)C的坐標(biāo)為(-3,5),由點(diǎn)到直線(xiàn)上構(gòu)建二元一次方程組求出k=5,b=10,待定系數(shù)法求出直線(xiàn)l2的函數(shù)表達(dá)式為y=-5x-10;
(3)構(gòu)建△MCP≌△HPD,由其性質(zhì),點(diǎn)D在直線(xiàn)y=-2x+1求出m=或n=0或,將m的值代入,得點(diǎn)D坐標(biāo)得(,)或(4,7)或(,).
解:(1)如圖1所示:
∵AD⊥ED,BE⊥ED,
∴∠ADC=∠CEB=90°,
又∵∠ACD+∠ACB+∠BEC=180°,∠ACB=90°,
∴∠ACD+∠BEC=90°,
又∵∠ACD+∠DAC=90°,
∴∠DAC=∠ECB,
在△CDA和△BEC中,
,
∴△CDA≌△BEC(AAS);
(2)過(guò)點(diǎn)B作BC⊥AB交AC于點(diǎn)C,CD⊥y軸交y軸于點(diǎn)D,如圖2所示:
∵CD⊥y軸,x軸⊥y軸,
∴∠CDB=∠BOA=90°,
又∵BC⊥AB,
∴∠ABC=90°,
又∵∠ABO+∠ABC+∠CBD=180°,
∴∠ABO+∠CBD=90°,
又∵∠BAO+∠ABO=90°,
∴∠BAO=∠CBD,
又∵∠BAC=45°,
∴∠ACB=45°,
∴AB=CB,
在△ABO和∠BCD中,
,
∴△ABO≌∠BCD(AAS),
∴AO=BD,BO=CD,
又∵直線(xiàn)l1:y=x+3與x軸交于點(diǎn)A,與y軸交于點(diǎn)B,
∴點(diǎn)A、B兩點(diǎn)的坐標(biāo)分別為(-2,0),(0,3),
∴AO=2,BO=3,
∴BD=2,CD=3,
∴點(diǎn)C的坐標(biāo)為(-3,5),
設(shè)l2的函數(shù)表達(dá)式為y=kx+b(k≠0),
點(diǎn)A、C兩點(diǎn)在直線(xiàn)l2上,依題意得:
,
∴,
∴直線(xiàn)l2的函數(shù)表達(dá)式為y=5x10;
(3)能成為等腰直角三角形,依題意得,
①若點(diǎn)P為直角時(shí),如圖3甲所示:
設(shè)點(diǎn)P的坐標(biāo)為(3,m),則PB的長(zhǎng)為4+m,
∵∠CPD=90°,CP=PD,
∠CPM+∠CDP+∠PDH=180°,
∴∠CPM+∠PDH=90°,
又∵∠CPM+∠DPM=90°,
∴∠PCM=∠PDH,
在△MCP和△HPD中,
,
∴△MCP≌△HPD(AAS),
∴CM=PH,PM=PD,
∴點(diǎn)D的坐標(biāo)為(7+m,-3+m),
又∵點(diǎn)D在直線(xiàn)y=-2x+1上,
∴-2(7+m)+1=-3+m,
解得:m=,
即點(diǎn)D的坐標(biāo)為(,);
②若點(diǎn)C為直角時(shí),如圖3乙所示:
設(shè)點(diǎn)P的坐標(biāo)為(3,n),則PB的長(zhǎng)為4+n,
CA=CD,
同理可證明△PCM≌△CDH(AAS),
∴PM=CH,MC=HD,
∴點(diǎn)D的坐標(biāo)為(4+n,-7),
又∵點(diǎn)D在直線(xiàn)y=-2x+1上,
∴-2(4+n)+1=-7,
解得:n=0,
∴點(diǎn)P與點(diǎn)A重合,點(diǎn)M與點(diǎn)O重合,
即點(diǎn)D的坐標(biāo)為(4,-7);
③若點(diǎn)D為直角時(shí),如圖3丙所示:
設(shè)點(diǎn)P的坐標(biāo)為(3,k),則PB的長(zhǎng)為4+k,
CD=PD,
同理可證明△CDM≌△PDQ(AAS),
∴MD=PQ,MC=DQ,
∴點(diǎn)D的坐標(biāo)為(,),
又∵點(diǎn)D在直線(xiàn)y=-2x+1上,
∴-2×+1=,
解得:k=,
∴點(diǎn)P與點(diǎn)A重合,點(diǎn)M與點(diǎn)O重合,
即點(diǎn)D的坐標(biāo)為(,);
綜合上述,點(diǎn)D坐標(biāo)得(,)或(4,7)或(,).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,矩形ABCD中,∠ABD、∠CDB的平分線(xiàn)BE、DF分別交邊AD、BC于點(diǎn)E、F.
(1)求證:四邊形BEDF是平行四邊形;
(2)當(dāng)∠ABE為多少度時(shí),四邊形BEDF是菱形?請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了解學(xué)生對(duì)各種球類(lèi)運(yùn)動(dòng)的喜愛(ài)程度,小明采取隨機(jī)抽樣的方法對(duì)他所在學(xué)校的部分學(xué)生進(jìn)行問(wèn)卷調(diào)查(每個(gè)被調(diào)查的學(xué)生必須選擇而且只能選擇其中一種項(xiàng)目),對(duì)調(diào)查結(jié)果進(jìn)行統(tǒng)計(jì)后,繪制了下面的統(tǒng)計(jì)圖(1)和圖(2).
(1)此次被調(diào)查的學(xué)生共有___人,m=_____;
(2)求喜歡“乒乓球”的學(xué)生的人數(shù),并將條形統(tǒng)計(jì)圖補(bǔ)充完整;
(3)若該校有2000名學(xué)生,估計(jì)全校喜歡“足球”的學(xué)生大約有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在等邊△ABC中,D是邊AC上一點(diǎn),連接BD,將△BCD繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)60°,得到△BAE,連接ED,下列結(jié)論正確的有( )個(gè).
①△BED是等邊三角形;②AE∥BC; ③△ADE的周長(zhǎng)等于BD+BC;④∠ADE=∠DBC.
A.1B.2C.3D.4
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)求證:三角形三個(gè)內(nèi)角的和等于180°.
(2)閱讀材料并回答問(wèn)題:
如圖,把△ABC的一邊BC延長(zhǎng),得到∠ACD.像這樣,三角形的一邊與另一邊的延長(zhǎng)線(xiàn)組成的角,叫做三角形的“外角”,在每個(gè)頂點(diǎn)處取這個(gè)三角形的一個(gè)外角,它們的和叫做這個(gè)三角形的“外角和”.補(bǔ)全圖形并求△ABC的“外角和”.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,矩形ABCD的兩個(gè)頂點(diǎn)A、B分別落在x、y軸上,頂點(diǎn)C、D位于第一象限,且OA=3,OB=2,對(duì)角線(xiàn)AC、BD交于點(diǎn)G,若曲線(xiàn)y經(jīng)過(guò)點(diǎn)C、G,則k=__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】邊長(zhǎng)為4的等邊與等邊互相重合,將沿直線(xiàn)L向左平移m個(gè)單位長(zhǎng)度,將向右也平移m個(gè)單位長(zhǎng)度,若,則m=________;若C、E是線(xiàn)段BF的三等分點(diǎn)時(shí),m=________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】觀察下列一組圖形中點(diǎn)的個(gè)數(shù),其中第1個(gè)圖中共有4個(gè)點(diǎn),第2個(gè)圖中共有10個(gè)點(diǎn),第3個(gè)圖中共有19個(gè)點(diǎn),…,按此規(guī)律第6個(gè)圖中共有點(diǎn)的個(gè)數(shù)是( 。
A.46B.63C.64D.73
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】把下列多項(xiàng)式分解因式
(1) 8a3b2-12ab3c (2)2x3-4x2+2x (3) (4)(ab+a)+(b+1) (5)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com