【題目】如圖,點A在直線l外,點B在直線l上.

1)在l上求作一點C,在l外求作一點D,使得以AB、CD為頂點的四邊形是菱形;(要求:用直尺和圓規(guī)作出所有大小不同的菱形)

2)連接AB,若AB5,且點A到直線l的距離為4,通過計算,找出(1)中面積最小的菱形.

【答案】(1)見解析;(2)見解析

【解析】

1)以AB、BC為邊作菱形得到如圖①的菱形ABCD;以AB為邊,BC為對角線作菱形得到如圖②的菱形ABDC;以AB為對角線、BC為邊作菱形得到如圖③的菱形ACBD;

2)分別進行三個菱形的面積可判斷菱形ACBD的面積最小.

:1)如圖①②③;

2)圖①中,菱形ABCD的面積=5×420,

圖②中,BC6,AD8,菱形ABDC的面積=×6×824

圖③中,作AHBCH,設(shè)菱形的邊長為x,

RtABH中,AH4,AB5,則BH3,

所以CHx3

RtACH中,42+x32x2,解得x

菱形ACBD的面積=

所以面積最小的菱形為ACBD

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】最近流感高發(fā)期,在預(yù)防流感期間學(xué)校堅持天天消毒,下圖是某次消毒時教室內(nèi)空氣中消毒液濃度 y(單位:毫克/立方米)隨時間 x(單位:分鐘)的變化情況圖.從開始噴藥到噴藥結(jié)束的 10 分鐘內(nèi)(包括第十分鐘),y x 的二次函數(shù);噴藥結(jié)束后(從第十分鐘開始),y x 的反比例函數(shù).

1)如果點 A 是圖中二次函數(shù)的頂點,求二次函數(shù)和反比例函數(shù)的解析式 (要寫出自變量取值范圍);

2)已知空氣中消毒液濃度 y 不少于 15 毫克/立方米且持續(xù)時間不少于 8 分鐘才能有效消毒,通過計算,請你回答這次消毒是否有效?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】商場某種商品平均每天可銷售30件,每件盈利50元。為了盡快減少庫存,商場決定采取適當(dāng)?shù)慕祪r措施。經(jīng)調(diào)查發(fā)現(xiàn),每件商品每降價1元,商場平均每天可多售出2件。設(shè)每件商品降價元。據(jù)此規(guī)律,請回答:

(1)商場日銷售量增加_____件,每件商品盈利_____元(用含的代數(shù)式表示)。

(2)在上述條件不變、銷售正常情況下,每件商品降價多少元時,商場日盈利可達到2100元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知二次函數(shù)y=+bx+c的圖象經(jīng)過A2,0)、B0,6)兩點.

1)求這個二次函數(shù)的解析式;

2)求當(dāng)x滿足什么條件時,函數(shù)值大于0?;

3)設(shè)該二次函數(shù)的對稱軸與x軸交于點C,連接BA、BC,求ABC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直角坐標(biāo)系中,直線y=x-3x軸于點B,交y軸于點C,拋物線經(jīng)過點A(-1,0),BC三點,Fy軸負(fù)半軸上,OF=OA.

(1)求拋物線的解析式;

(2)在第一象限的拋物線上存在一點P,滿足SABC=SPBC,請求出點P的坐標(biāo);

(3)D是直線BC的下方的拋物線上的一個動點,過D點作DEy軸,交直線BC于點E,①當(dāng)四邊形CDEF為平行四邊形時,求D點的坐標(biāo);

②是否存在點D,使CEDF互相垂直平分?若存在,請求出點D的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知A(﹣4,﹣1),B(﹣5,﹣4),C(﹣1,﹣3),ABC經(jīng)過平移得到的ABCABC中任意一點Px1y1)平移后的對應(yīng)點為Px1+6,y1+4).

1)請在圖中作出ABC

2)寫出點A、B、C的坐標(biāo);

3)求ABC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,AB是⊙O的直徑,BD是⊙O的弦,延長BD到點C,使DC=BD,連接AC,過點DDEACE

(1)求證:AB=AC;

(2)求證:DE為⊙O的切線.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】ABCD中,AEBC于點E,FAB邊上一點,連接CF,交AE于點G,CFCBAE

1)若ABBC,求CE的長;

2)求證:BECGAG

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,已知長方形ABCD的兩個頂點A(2,-1),C(6,2)。點M為y軸上一點,△MAB的面積為6,且MD<MA。

請解答下列問題:

(1)頂點B的坐標(biāo)為 ;

(2)將長方形ABCD平移后得到,若,則的坐標(biāo)為 ;

(3)求點M的坐標(biāo)。

查看答案和解析>>

同步練習(xí)冊答案