【題目】在正方形ABCD中,E是邊CD上一點(點E不與點C、D重合),連結BE.
(感知)如圖①,過點A作AF⊥BE交BC于點F.易證△ABF≌△BCE.(不需要證明)
(探究)如圖②,取BE的中點M,過點M作FG⊥BE交BC于點F,交AD于點G.
(1)求證:BE=FG.
(2)連結CM,若CM=1,則FG的長為 .
(應用)如圖③,取BE的中點M,連結CM.過點C作CG⊥BE交AD于點G,連結EG、MG.若CM=3,則四邊形GMCE的面積為 .
【答案】(1)證明見解析;(2)2,9.
【解析】感知:利用同角的余角相等判斷出∠BAF=∠CBE,即可得出結論;
探究:(1)判斷出PG=BC,同感知的方法判斷出△PGF≌CBE,即可得出結論;
(2)利用直角三角形的斜邊的中線是斜邊的一半,
應用:借助感知得出結論和直角三角形斜邊的中線是斜邊的一半即可得出結論.
感知:∵四邊形ABCD是正方形,
∴AB=BC,∠BCE=∠ABC=90°,
∴∠ABE+∠CBE=90°,
∵AF⊥BE,
∴∠ABE+∠BAF=90°,
∴∠BAF=∠CBE,
在△ABF和△BCE中,
,
∴△ABF≌△BCE(ASA);
探究:(1)如圖②,
過點G作GP⊥BC于P,
∵四邊形ABCD是正方形,
∴AB=BC,∠A=∠ABC=90°,
∴四邊形ABPG是矩形,
∴PG=AB,∴PG=BC,
同感知的方法得,∠PGF=∠CBE,
在△PGF和△CBE中,
,
∴△PGF≌△CBE(ASA),
∴BE=FG;
(2)由(1)知,FG=BE,
連接CM,
∵∠BCE=90°,點M是BE的中點,
∴BE=2CM=2,
∴FG=2,
故答案為:2.
應用:同探究(2)得,BE=2ME=2CM=6,
∴ME=3,
同探究(1)得,CG=BE=6,
∵BE⊥CG,
∴S四邊形CEGM=CG×ME=×6×3=9,
故答案為:9.
科目:初中數學 來源: 題型:
【題目】如圖,點O是直線AE上的一點,OC是∠AOD的平分線,∠BOD=∠AOD.
(1)若∠BOD=20°,求∠BOC的度數;
(2)若∠BOC=n°,用含有n的代數式表示∠EOD的大。
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,直線AB與x軸、y軸分別交于點A(3,0)、B(0,4),點D在y軸的負半軸上,若將△DAB沿直線AD折疊,點B恰好落在x軸正半軸上的點C處.
(1)求直線AB的表達式;
(2)求點C和點D的坐標;
(3)y軸的正半軸上是否存在一點P,使得S△PAB=S△OCD?若存在,求出點P的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】為了加強公民的節(jié)水意識,合理利用水資源,某市采用價格調控的手段達到節(jié)水的目的,該市自來水收貴的價目表如下(注:水費按月份結算,表示立方米)
價目表 | |
每月用水量 | 價格 |
不超過的部分 | |
超出不超出的部分 | |
超出的部分 |
某戶居民1月份和2月份的用水量分別為和,則應收水費分別是 元和 元
若該戶居民月份用水量(其中),則應收水費多少元? (用含的式子表示,并化簡)
若該戶居民兩個月共用水 (月份用水量超過月份),設月份用水,求該戶居民兩個月共交水費多少元? (用含 的式子表示,并化簡)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,分別是數軸上四個整數所對應的點,其中有一點是原點,并且這四個整數點每相鄰兩點之間的距離為1個單位長度.數對應的點在與之間,數對應的點在與之間.若,則原點是( )
A.或B.與C.與D.與
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,點D、E分別是等邊三角形ABC的邊BC、AC上的點,連接AD、BE交于點O,且△ABD≌△BCE.
(1)若AB=3,AE=2,則BD= ;
(2)若∠CBE=15°,則∠AOE= ;
(3)若∠BAD=a,猜想∠AOE的度數,并說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知正方形DEFG的頂點D、E在△ABC的邊BC上,頂點G、F分別在邊AB、AC上.如果BC=4,△ABC的面積是6,那么這個正方形的邊長是_____.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖1,點P、Q分別是等邊△ABC邊AB、BC上的動點(端點除外),點P從頂點A、點Q從頂點B同時出發(fā),且它們的運動速度相同,連接AQ、CP交于點M.
(1)求證:△ABQ≌△CAP;
(2)當點P、Q分別在AB、BC邊上運動時,∠QMC變化嗎?若變化,請說明理由;若不變,求出它的度數.
(3)如圖2,若點P、Q在運動到終點后繼續(xù)在射線AB、BC上運動,直線AQ、CP交點為M,則∠QMC變化嗎?若變化,請說明理由;若不變,直接寫出它的度數.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com