【題目】一個不透明的口袋里裝有分別標(biāo)有漢字“最”、“”、“”、“東”的四個小球,除漢字不同之外,小球沒有任何區(qū)別,每次摸球前先攪拌均勻再摸球.

(1)若從中任取一個球,球上的漢字剛好是“丹”的概率為

(2)甲從中任取一球,記下漢字后再放回袋中,然后再從中任取一球,請用樹狀圖或列表格的方法,求出甲取出的兩個球上的漢字恰能組成“最美”或“丹東”的概率為P1;

(3)乙從中任取一球,不放回,再從中任取一球,記乙取出的兩個球上的漢字恰能組成“最美”或“丹東”的概率P2,指出P1,P2的大小關(guān)系 (請直接寫出結(jié)論).

【答案】(1);(2)詳見解析;(3).

【解析】

(1)由一個不透明的口袋里裝有分別標(biāo)有漢字“最”,“美”,“丹”,“東”的四個小球,除漢字不同之外,小球沒有任何區(qū)別,直接利用概率公式求解即可求得答案;

(2)首先根據(jù)題意畫出樹狀圖,然后由樹狀圖求得所有等可能的結(jié)果與甲取出的兩個球上的漢字恰能組成“最美”或“丹東”的情況,再利用概率公式即可求得答案;

(3)首先根據(jù)題意畫出樹狀圖,然后由樹狀圖求得所有等可能的結(jié)果與乙取出的兩個球上的漢字恰能組成“最美”或“丹東”的情況,再利用概率公式即可求得答案.

解:(1)一個不透明的口袋里裝有分別標(biāo)有漢字“最”,“美”,“丹”,“東”的四個小球,除漢字不同之外,小球沒有任何區(qū)別,從中任取一個球,球上的漢字剛好是“丹”的概率為:.

(2)畫樹狀圖得:

共有種等可能的結(jié)果,恰能組成“最美”或“丹東”的有種情況,

甲取出的兩個球上的漢字恰能組成“最美”或“丹東”的概率.

(3)畫樹狀圖得:

共有種等可能的結(jié)果,乙取出的兩個球上的漢字恰能組成“最美”或“丹東”的有種情況,

乙取出的兩個球上的漢字恰能組成“最美”或“丹東”的概率為.

所以.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一次函數(shù)y=kx+b與反比例函數(shù)y=的圖象在第一象限交于點(diǎn)A(4,3),與y軸的負(fù)半軸交于點(diǎn)B,且OA=OB.

(1)求一次函數(shù)y=kx+b和y=的表達(dá)式;

(2)已知點(diǎn)C在x軸上,且△ABC的面積是8,求此時點(diǎn)C的坐標(biāo);

(3)反比例函數(shù)y=(1≤x≤4)的圖象記為曲線C1,將C1向右平移3個單位長度,得曲線C2,則C1平移至C2處所掃過的面積是_________.(直接寫出答案)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC內(nèi)一點(diǎn)D,點(diǎn)CAE上一點(diǎn),ADBE于點(diǎn)P,射線DCBE的延長線于點(diǎn)F,且∠ABD=∠ACD,∠PDB=∠PDC

(1)求證:ABAC;

(2)AB3,AE5,求的值;

(3),m,則_______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,等邊ABC中,AD是BAC的角平分線,E為AD上一點(diǎn),以BE為一邊且在BE下方作等邊BEF,連接CF.

(1)求證:AE=CF;

(2)求ACF的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小明和爸爸周末到濕地公園進(jìn)行鍛煉,兩人同時從家出發(fā),勻速騎共享單車到達(dá)公園入口,然后一同勻速步行到達(dá)驛站,到達(dá)驛站后小明的爸爸立即又騎共享單車按照來時騎行速度原路返回,在公園入口處改為步行,并按來時步行速度原路回家,小明到達(dá)驛站后逗留了10分鐘之后騎車回家,爸爸在鍛煉過程中離出發(fā)地的路程與出發(fā)的時間的函數(shù)關(guān)系如圖.

(1)圖中m_____,n_____;(直接寫出結(jié)果)

(2)小明若要在爸爸到家之前趕上,問小明回家騎行速度至少是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖①所示,甲、乙兩車從地出發(fā),沿相同路線前往同一目的地,途中經(jīng)過地.甲車先出發(fā),當(dāng)甲車到達(dá)地時,乙車開始出發(fā).當(dāng)乙車到達(dá)地時,甲車與地相距.設(shè)甲、乙兩車與地之間的距離為,,乙車行駛的時間為,的函數(shù)關(guān)系如圖②所示.

1,兩地之間的距離為 ;

2)當(dāng)為何值時,甲、乙兩車相距?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知點(diǎn)E,F分別是□ABCD的邊BC,AD上的中點(diǎn),且∠BAC=90°

1)求證:四邊形AECF是菱形;

2)若∠B=30°BC=10,求菱形AECF面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)是等邊三角形內(nèi)一點(diǎn),繞點(diǎn) .按順時針方向旋轉(zhuǎn), 連接.

1)求證:是等邊三角形;

2)當(dāng)時, 試判斷的形狀,并說明理由;

3)探究:當(dāng)為多少度時,是等腰三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,ABC的三個頂點(diǎn)坐標(biāo)分別為A(-24),B(-4,1)C(-1,-1)

1)直接寫出ABC的面積;

2)在圖中作出ABC關(guān)于x軸的對稱A1B1C1

3)將ABC向右平移5個單位,向上平移一個單位,得到A2B2C2,并寫出B2的坐標(biāo);

查看答案和解析>>

同步練習(xí)冊答案