【題目】如圖,在Rt△ABC中,∠ABC=90°,AB=CB,以AB為直徑的⊙O交AC于點(diǎn)D,點(diǎn)E是AB邊上一點(diǎn)(點(diǎn)E不與點(diǎn)A、B重合),DE的延長線交⊙O于點(diǎn)G,DF⊥DG,且交BC于點(diǎn)F.

(1)求證:AE=BF;

(2)連接GB,EF,求證:GB∥EF;

(3)若AE=1,EB=2,求DG的長.

【答案】(1)詳見解析;(2)詳見解析;(3)

【解析】

試題分析:(1)連接BD,由三角形ABC為等腰直角三角形,求出∠A與∠C的度數(shù),根據(jù)AB為圓的直徑,利用圓周角定理得到∠ADB為直角,即BD垂直于AC,利用直角三角形斜邊上的中線等于斜邊的一半,得到AD=DC=BD=AC,進(jìn)而確定出∠A=∠FBD,再利用同角的余角相等得到一對(duì)角相等,利用ASA得到三角形AED與三角形BFD全等,利用全等三角形對(duì)應(yīng)邊相等即可得證;(2)連接EF,BG,由三角形AED與三角形BFD全等,得到ED=FD,進(jìn)而得到三角形DEF為等腰直角三角形,利用圓周角定理及等腰直角三角形性質(zhì)得到一對(duì)同位角相等,利用同位角相等兩直線平行即可得證;(3)由全等三角形對(duì)應(yīng)邊相等得到AE=BF=1,在直角三角形BEF中,利用勾股定理求出EF的長,利用銳角三角形函數(shù)定義求出DE的長,利用兩對(duì)角相等的三角形相似得到三角形AED與三角形GEB相似,由相似得比例,求出GE的長,由GE+ED求出GD的長即可.

試題解析:(1)證明:連接BD,

在Rt△ABC中,∠ABC=90°,AB=BC,

∴∠A=∠C=45°,

∵AB為圓O的直徑,

∴∠ADB=90°,即BD⊥AC,

∴AD=DC=BD=AC,∠CBD=∠C=45°,

∴∠A=∠FBD,

∵DF⊥DG,

∴∠FDG=90°,

∴∠FDB+∠BDG=90°,

∵∠EDA+∠BDG=90°,

∴∠EDA=∠FDB,

在△AED和△BFD中,

,

∴△AED≌△BFD(ASA),

∴AE=BF;

(2)證明:連接EF,BG,

∵△AED≌△BFD,

∴DE=DF,

∵∠EDF=90°,

∴△EDF是等腰直角三角形,

∴∠DEF=45°,

∵∠G=∠A=45°,

∴∠G=∠DEF,

∴GB∥EF;

(3)∵AE=BF,AE=1,

∴BF=1,

在Rt△EBF中,∠EBF=90°,

∴根據(jù)勾股定理得:EF2=EB2+BF2,

∵EB=2,BF=1,

∴EF==,

∵△DEF為等腰直角三角形,∠EDF=90°,

∴cos∠DEF=,

∵EF=,

∴DE=×=,

∵∠G=∠A,∠GEB=∠AED,

∴△GEB∽△AED,

=,即GEED=AEEB,

GE=2,即GE=,

則GD=GE+ED=

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,APB中,AB=2,APB=90°,在AB的同側(cè)作正ABD、正APE和正BPC,則四邊形PCDE面積的最大值是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在Rt△ACB中,∠ACB=90°,AC=BC=3,CD=1,CH⊥BD于H,點(diǎn)O是AB中點(diǎn),連接OH,則OH=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)B,F(xiàn),C,E在直線l上(F,C之間不能直接測(cè)量),點(diǎn)A,D在l異側(cè),測(cè)得AB=DE,AC=DF,BF=EC.

(1)求證:ABC≌△DEF;

(2)指出圖中所有平行的線段,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,點(diǎn)D,E分別在邊AC,AB上,BD與CE交于點(diǎn)O,給出下列三個(gè)條件:①∠EBO=∠DCO;②BE=CD;③OB=OC.
(1)上述三個(gè)條件中,由哪兩個(gè)條件可以判定△ABC是等腰三角形?(用序號(hào)寫出所有成立的情形)
(2)請(qǐng)選擇(1)中的一種情形,寫出證明過程.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列計(jì)算中,正確的是( 。
A.2a2+3a2=5a4
B.(a﹣b)2=a2﹣b2
C.(a33=a6
D.(﹣2a23=﹣8a6

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】Rt△ABC與Rt△DEF的位置如圖所示,其中AC=2,BC=6,DE=3,∠D=30°,其中,Rt△DEF沿射線CB以每秒1個(gè)單位長度的速度向右運(yùn)動(dòng),射線DE、DF與射線AB分別交于N、M兩點(diǎn),運(yùn)動(dòng)時(shí)間為t,當(dāng)點(diǎn)E運(yùn)動(dòng)到與點(diǎn)B重合時(shí)停止運(yùn)動(dòng).

(1)當(dāng)Rt△DEF在起始時(shí),求∠AMF的度數(shù);

(2)設(shè)BC的中點(diǎn)的為P,當(dāng)△PBM為等腰三角形時(shí),求t的值;

(3)若兩個(gè)三角形重疊部分的面積為S,寫出S與t的函數(shù)關(guān)系式和相應(yīng)的自變量的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,平行四邊形ABCD的對(duì)角線AC、BD相交于點(diǎn)O,E,F(xiàn)分別是OA,OC的中點(diǎn),連接BE,DF

(1)根據(jù)題意,補(bǔ)全原形;

(2)求證:BE=DF.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】把a(bǔ)3﹣2a2+a分解因式的結(jié)果是(
A.a2(a﹣2)+a
B.a(a2﹣2a)
C.a(a+1)(a﹣1)
D.a(a﹣1)2

查看答案和解析>>

同步練習(xí)冊(cè)答案