【題目】如圖所示.某校計劃將一塊形狀為銳角三角形ABC的空地進行生態(tài)環(huán)境改造.已知△ABC的邊BC長120米,高AD長80米.學校計劃將它分割成△AHG、△BHE、△GFC和矩形EFGH四部分(如圖).其中矩形EFGH的一邊EF在邊BC上.其余兩個頂點H、G分別在邊AB、AC上.現(xiàn)計劃在△AHG上種草,每平方米投資6元;在△BHE、△FCG上都種花,每平方米投資10元;在矩形EFGH上興建愛心魚池,每平方米投資4元.
(1)當FG長為多少米時,種草的面積與種花的面積相等?
(2)當矩形EFGH的邊FG為多少米時,△ABC空地改造總投資最小,最小值為多少?
【答案】(1)40;(2)FG=60時,△ABC空地改造總投資最小,最小值為26400.
【解析】
(1)可利用相似分別表示出相應(yīng)的三角形的底與高,讓面積相等即可;
(2)把相應(yīng)的總投資用含x的代數(shù)式表示出后,求出二次函數(shù)的最值即可.
解:(1)設(shè)FG=x米,則AK=(80﹣x)米.
由△AHG∽△ABC,BC=120,AD=80,
可得:,
∴HG=,BE+FC=120﹣()=,
∴,
解得.
∴當FG的長為40米時,種草的面積和種花的面積相等.
(2)設(shè)改造后的總投資為W元.
則W=
=,
∵二次項系數(shù)6>0,0<x≤80,
∴當x=20時,W最小=26400.
答:當矩形EFGH的邊FG長為20米時,空地改造的總投資最小,最小值為26400元.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,點的坐標為,以點為圓心,以長為半徑畫弧,交直線于點,過點作軸,交直線于點,以為圓心,以長為半徑畫弧,交直線于點,過點作軸,交直線于點,以點為圓心,以長為半徑畫弧,交直線于點,過點作軸交直線于點,以點為圓心,以長為半徑面弧,交直線于點,…,按照如此規(guī)律進行下去,點的坐標為__________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】2020年5月16日,“錢塘江詩路”航道全線開通,一艘游輪從杭州出發(fā)前往衢州,線路如圖1所示.當游輪到達建德境內(nèi)的“七里揚帆”景點時,一艘貨輪沿著同樣的線路從杭州出發(fā)前往衢州.已知游輪的速度為20km/h,游輪行駛的時間記為t(h),兩艘輪船距離杭州的路程s(km)關(guān)于t(h)的圖象如圖2所示(游輪在?壳昂蟮男旭偹俣炔蛔儯
(1)寫出圖2中C點橫坐標的實際意義,并求出游輪在“七里揚帆”?康臅r長.
(2)若貨輪比游輪早36分鐘到達衢州.問:
①貨輪出發(fā)后幾小時追上游輪?
②游輪與貨輪何時相距12km?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為了傳承優(yōu)秀傳統(tǒng)文化,某校舉行“經(jīng)典誦讀”比賽,誦讀材料有:A《唐詩》、B《宋詞》、C《論語》.將A、B、C這三個字母分別寫在3張完全相同的不透明卡片的正面上,把這3張卡片背面朝上洗勻后放在桌面上.小紅和小亮參加誦讀比賽,比賽時小紅先從中隨機抽取一張卡片,記錄下卡片上的內(nèi)容,放回后洗勻,再由小亮從中隨機抽取一張卡片,選手按各自抽取的卡片上的內(nèi)容進行比賽.
(1)小紅誦讀《論語》的概率是 ;
(2)請用列表法或畫樹狀圖的方法,求小紅和小亮誦讀兩個相同材料的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,圓桌正上方的燈泡O發(fā)出的光線照射桌面后,在地面上形成圓形陰影.已知桌面的直徑為1.2m,桌面距離地面1m,若燈泡O距離地面3m,則地面上陰影部分的面積為( 。
A.0.36πm2B.0.81πm2C.1.44πm2D.3.24πm2
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某校組建了書法、音樂、美術(shù)、舞蹈、演講5個社團,隨機調(diào)查了部分學生.被調(diào)查學生每人都參加且只參加了其中一個社團活動,并將調(diào)查結(jié)果制成了如圖兩幅不完整的統(tǒng)計圖,在扇形統(tǒng)計圖中,“音樂”所對應(yīng)的扇形圓心角度數(shù)是( )度.
A.25%B.25C.60D.90
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面立角坐標系中,反比例函數(shù)y=(k≠0,x<0)與一次函數(shù)y=ax+b的圖象交于點A(﹣3,1)、B(m,3).點C的坐標為(1,0),連接AC,BC.
(1)求反比例函數(shù)和一次函數(shù)的表達式;
(2)當x<0時,直接寫出不等式≥ax+b的解集 ;
(3)若點M為y軸的正半軸上的動點,當△ACM是直角三角形時,直接寫出點M的坐標 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】定義:在平面直角坐標系中,點的橫、縱坐標的絕對值之和叫做點的勾股值,記.若拋物線與直線只有一個交點,已知點在第一象限,且,令,則的取值范圍為( )
A.B.
C.D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線經(jīng)過原點和點,頂點為,拋物線與拋物線關(guān)于原點對稱.
(1)求拋物線的函數(shù)表達式及點的坐標;
(2)已知點、在拋物線上的對應(yīng)點分別為、,的對稱軸交軸于點,則拋物線的對稱軸上是否存在點,使得以、、為頂點的三角形與相似?若存在,請求出點的坐標;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com