分析 (1)根據三個矩形面積相等,得到矩形AEFD面積是矩形BCFE面積的2倍,可得出AE=2BE,于是得到結論;
(2)根據三個矩形面積相等,得到矩形AEFD面積是矩形BCFE面積的2倍,可得出AE=2BE,設BE=a,則有AE=2a,表示出a與2a,進而表示出y與x的關系式,并求出x的范圍即可;
(3)利用二次函數的性質求出y的最大值,以及此時x的值即可.
解答 解:(1)∵三塊矩形區(qū)域的面積相等,
∴矩形AEFD面積是矩形BCFE面積的2倍,
∴AE=2BE,
∴AE:EB=2:1;
(2)∵三塊矩形區(qū)域的面積相等,
∴矩形AEFD面積是矩形BCFE面積的2倍,
∴AE=2BE,
設BE=a,則AE=2a,
∴8a+2x=40,
∴a=-$\frac{1}{4}$x+5,3a=-$\frac{3}{4}$x+15,
∴y=(-$\frac{3}{4}$x+15)x=-$\frac{3}{4}$x2+15x,
∵a=-$\frac{1}{4}$x+5>0,
∴x<20,
則y=-$\frac{3}{4}$x2+15x(0<x<20);
(3)∵y=-$\frac{3}{4}$x2+15x=-$\frac{3}{4}$(x-10)2+75(0<x<20),且二次項系數為-$\frac{3}{4}$<0,
∴當x=10時,y有最大值,最大值為75平方米.
點評 此題考查了二次函數的應用,以及列代數式,熟練掌握二次函數的性質是解本題的關鍵.
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
科目:初中數學 來源: 題型:選擇題
A. | y=$\frac{1}{2}{({x+1})^2}$-2 | B. | y=$\frac{1}{2}{({x-1})^2}$-2 | C. | y=$\frac{1}{2}{({x+1})^2}$+2 | D. | y=$\frac{1}{2}{({x-1})^2}$+2 |
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
科目:初中數學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com