【題目】如圖,已知∠AOB=COD=90°

1)猜想:∠BOC與∠AOD之間的數(shù)量關(guān)系,并說明理由;

2)若OE平分∠AOC,∠BOC=34°,求∠AOE的余角的度數(shù);

3)若OC表示北偏東34°方向,在(2)的條件下直接寫出OE表示的方向.

【答案】1)∠BOC+AOD=180°,理由見解析;(228°;(3OE表示的方向?yàn)楸逼?/span>28°

【解析】

1)首先根據(jù)圖形可知∠AOB+BOC+COD+AOD=360°,據(jù)此進(jìn)一步用它們四個(gè)角的和減去∠AOB與∠COD即可得出答案;

(2)首先根據(jù)題意求出∠AOC的度數(shù),然后利用角平分線性質(zhì)得出∠AOE的度數(shù),最后進(jìn)一步計(jì)算出它的余角即可;

(3)根據(jù)題意可求出∠BOE度數(shù),然后參照OC表示北偏東34°方向即可得出OE表示的方向.

1)∠BOC與∠AOD之間的數(shù)量關(guān)系為:∠BOC+AOD=180°,

理由如下:

∵∠AOB=COD=90°,∠AOB+BOC+COD+AOD=360°,

∴∠BOC+AOD=360°AOBCOD=180°

2)∵∠AOB=90°,∠BOC=34°,

∴∠AOC=AOB+BOC=124°,

OE平分∠AOC,

∴∠AOE=AOC=62°

∴90°62°=28°,

即∠AOE的余角為28°;

3)由(2)可得:∠AOE =62°,

∵∠AOB =90°

∴∠BOE=90°62=28°,

OC表示北偏東34°方向,

OE表示的方向?yàn)楸逼?/span>28°.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABCABBC,BEAC,∠1=∠2,AD=AB,則下列結(jié)論不正確的是

A. BF=DF B. ∠1=∠EFD C. BF>EF D. FDBC

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1所示,從邊長為a的正方形紙片中剪去一個(gè)邊長為b的小正方形,再沿著線段AB剪開,把剪成的兩張紙拼成如圖2的等腰梯形(其面積=(上底+下底)

公式的探究與應(yīng)用:

(1)如圖1所示,可以求出陰影部分的面積是    ;

(2)若將圖1的陰影部分裁剪下來,重新拼成一個(gè)如圖2所示的長方形,求此長方形的面積.

(3)比較兩圖陰影部分的面積,可以得到一個(gè)公式:

    

(4)運(yùn)用公式計(jì)算

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某車行去年A型車的銷售總額為6萬元,今年每輛車的售價(jià)比去年減少400元.若賣出的數(shù)量相同,銷售總額將比去年減少20%.

(1)求今年A型車每輛車的售價(jià).

(2)該車行計(jì)劃新進(jìn)一批A型車和B型車共45輛,已知A、B型車的進(jìn)貨價(jià)格分別是1100元,1400元,今年B型車的銷售價(jià)格是2000元,要求B型車的進(jìn)貨數(shù)量不超過A型車數(shù)量的兩倍,應(yīng)如何進(jìn)貨才能使這批車獲得最大利潤,最大利潤是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在數(shù)軸上點(diǎn)表示的數(shù)是若動(dòng)點(diǎn)從原點(diǎn)出發(fā),以個(gè)單位/秒的速度向左運(yùn)動(dòng);同時(shí)另一動(dòng)點(diǎn)從點(diǎn)出發(fā),以個(gè)單位/秒的速度也向左運(yùn)動(dòng),到達(dá)原點(diǎn)后立即以原來的速度返回,向右運(yùn)動(dòng),設(shè)運(yùn)動(dòng)的時(shí)間為()

當(dāng)時(shí),求點(diǎn)到原點(diǎn)的距離;

當(dāng)時(shí),求點(diǎn)到原點(diǎn)的距離;

當(dāng)點(diǎn)到原點(diǎn)的距離為時(shí),求點(diǎn)到原點(diǎn)的距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC 中,∠ACB=90°,AC=6cm,BC=8cm,點(diǎn) P A 點(diǎn)出發(fā)沿 A-C-B 路徑向終點(diǎn)運(yùn)動(dòng),終點(diǎn)為 B點(diǎn);點(diǎn) Q B 點(diǎn)出發(fā)沿 B-C-A 路徑向終點(diǎn)運(yùn)動(dòng),終點(diǎn)為 A 點(diǎn),點(diǎn) P Q 分別以 1cm/s xcm / s 的運(yùn)動(dòng)速度 同時(shí)開始運(yùn)動(dòng),兩點(diǎn)都要到相應(yīng)的終點(diǎn)時(shí)才能停止運(yùn)動(dòng),在某時(shí)刻,分別過 P Q PE⊥ l E,QF⊥ l F.

(1)如圖,當(dāng) x 2 時(shí),設(shè)點(diǎn) P 運(yùn)動(dòng)時(shí)間為 ts ,當(dāng)點(diǎn) P AC 上,點(diǎn) Q BC 上時(shí):

用含 t 的式子表示 CP CQ,則 CP= cm,CQ= cm;

當(dāng) t 2 時(shí),PEC QFC 全等嗎?并說明理由;

(2)請(qǐng)問:當(dāng) x 3 時(shí),PEC QFC 有沒有可能全等?若能,直接寫出符合條件的 t 的值;若不能,請(qǐng)說明 理由。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在如圖所示的正方形網(wǎng)格中,每個(gè)小正方形的邊長為1,格點(diǎn)三角形(頂點(diǎn)是網(wǎng)格線的交點(diǎn)的三角形)ABC的頂點(diǎn)A、C的坐標(biāo)分別為(﹣4,5),(﹣1,3).

(1)請(qǐng)?jiān)谌鐖D所示的網(wǎng)格平面內(nèi)作出平面直角坐標(biāo)系;

(2)請(qǐng)作出ABC關(guān)于y軸對(duì)稱的A′B′C′;

(3)點(diǎn)B′的坐標(biāo)為   

(4)ABC的面積為   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知RtABC中,∠B=90°,A=60°,AC=2+4,點(diǎn)M、N分別在線段AC、AB上,將ANM沿直線MN折疊,使點(diǎn)A的對(duì)應(yīng)點(diǎn)D恰好落在線段BC上,當(dāng)DCM為直角三角形時(shí),折痕MN的長為__

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】有四張相同的卡片,分別寫有數(shù)字2,0,1,5,將它們背面朝上(背面無差別)洗勻后放在桌上.

(1)從中任意抽出一張,抽到卡片上的數(shù)字為負(fù)數(shù)的概率;

(2)從中任意抽出兩張,用樹狀圖或表格列出所有可能的結(jié)果,并求抽出卡片上的數(shù)字積為正數(shù)的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案