【題目】如圖:在△ABC中,CD是AB邊上的高,AC=20,BC=15,DB=9.
(1)求CD的長;
(2)△ABC是直角三角形嗎?為什么?
【答案】
(1)解:∵CD⊥AB,
∴∠CDB=∠CDA=90°,
在Rt△BCD中,BC=15,DB=9,
根據勾股定理得:CD=
(2)解:△ABC為直角三角形,理由為:
在Rt△ACD中,AC=20,CD=12,
根據勾股定理得:AD= ;
∵AB=BD+AD=9+16=25,
∴AC2+BC2=AB2,
∴△ABC為直角三角形
【解析】(1)由CD垂直于AB,得到三角形BCD與三角形ACD都為直角三角形,由BC與DB,利用勾股定理求出CD的長;(2)三角形ABC為直角三角形,理由為:由BD+AD求出AB的長,利用勾股定理的逆定理得到三角形ABC為直角三角形.
【考點精析】認真審題,首先需要了解勾股定理的逆定理(如果三角形的三邊長a、b、c有下面關系:a2+b2=c2,那么這個三角形是直角三角形).
科目:初中數學 來源: 題型:
【題目】為了切實關注、關愛貧困家庭學生,某校對全校各班貧困家庭學生的人數情況進行了統計,以便國家精準扶貧政策有效落實.統計發(fā)現班上貧困家庭學生人數分別有2名、3名、4名、5名、6名,共五種情況.并將其制成了如下兩幅不完整的統計圖:
(1)求該校一共有多少個班?并將條形圖補充完整;
(2)某愛心人士決定從2名貧困家庭學生的這些班級中,任選兩名進行幫扶,請用列表法或樹狀圖的方法,求出被選中的兩名學生來自同一班級的概率.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知:一次函數y=﹣x+b的圖象與x軸、y軸的交點分別為A、B與反比例函數的圖象交于點C、D,且.
(1)求∠BAO的度數;
(2)求O到DC的距離.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在△ABC中,AB=AC.
(1)如圖1,如果∠BAD=30°,AD是BC上的高,AD=AE,則∠EDC=
(2)如圖2,如果∠BAD=40°,AD是BC上的高,AD=AE,則∠EDC=
(3)思考:通過以上兩題,你發(fā)現∠BAD與∠EDC之間有什么關系?請用式子表示:
(4)如圖3,如果AD不是BC上的高,AD=AE,是否仍有上述關系?如有,請你寫出來,并說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】(1)如圖1,已知⊙O的半徑是4,△ABC內接于⊙O,AC=.
①求∠ABC的度數;
②已知AP是⊙O的切線,且AP=4,連接PC.判斷直線PC與⊙O的位置關系,并說明理由;
(2)如圖2,已知ABCD的頂點A、B、D在⊙O上,頂點C在⊙O內,延長BC交⊙O于點E,連接DE.求證:DE=DC.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】下列命題中,真命題是( )
A.鄰邊之比相等的兩個平行四邊形一定相似B.鄰邊之比相等的兩個矩形一定相似
C.對角線之比相等的兩個平行四邊形一定相似D.對角線之比相等的兩個矩形一定相似
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】三角形的三邊是三個連續(xù)的奇數,最長邊是2k+5(k為大于1的整數),則其它兩邊分別分別是 和 ,猜想:這個三角形的最長邊與最短邊之和與第三邊有何關系,試說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】一個兩位數是a,在它的左邊加上一個數字b變成一個三位數,則這個三位數用代數式表示為( 。
A. 10a+100b B. ba C. 100ba D. 100b+a
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com