【題目】如圖,四邊形ABCD中,∠ADC90°,AD4cm,CD3cmAB13cm,BC12cm,求這個(gè)四邊形的面積?

【答案】24cm2

【解析】

連接AC,利用勾股定理求出AC的長,在△ABC中,判斷它的形狀,并求出它的面積,最后求出四邊形ABCD的面積.

解:連接AC,


AD=4cm,CD=3cm,∠ADC=90°,
AC===5cm
SACD=CDAD=6cm2).
在△ABC中,∵52+122=132AC2+BC2=AB2,
∴△ABC為直角三角形,即∠ACB=90°,
SABC=ACBC=30cm2).
S四邊形ABCD=SABC-SACD
=30-6=24cm2).
答:四邊形ABCD的面積為24cm2

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知函數(shù)的圖像與軸交于點(diǎn),一次函數(shù)的圖像分別與軸、軸交于點(diǎn),且與的圖像交于點(diǎn).

(1)的值;

(2),則的取值范圍是 ;

(3)求四邊形的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,己知正方形ABCD的邊長為4, P是對角線BD上一點(diǎn),PE⊥BC于點(diǎn)E, PF⊥CD于點(diǎn)F,連接AP, EF.給出下列結(jié)論:①PD=EC:②四邊形PECF的周長為8;③△APD一定是等腰三角形:④AP=EF⑤EF的最小值為;⑥AP⊥EF.其中正確結(jié)論的序號為(

A. ①②④⑤⑥B. ①②④⑤

C. ②④⑤D. ②④⑤⑥

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如果二次函數(shù)y=ax2+bx+c的圖象與x軸有兩個(gè)公共點(diǎn),那么一元二次方程ax2+bx+c=0有兩個(gè)不相等的實(shí)數(shù)根.請根據(jù)你對這句話的理解,解決下面問題:若m、nmn)是關(guān)于x的方程1﹣x﹣a)(x﹣b=0的兩根,且ab,則a、b、m、n的大小關(guān)系是( ).

A. B.

C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是⊙O的一條弦,EAB的中點(diǎn),過點(diǎn)EECOA于點(diǎn)C,過點(diǎn)B作⊙O的切線交CE的延長線于點(diǎn)D.

(1)求證:DB=DE;

(2)若AB=12,BD=5,求⊙O的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校在校園文化藝術(shù)節(jié)期間,舉辦了歌詠、小品、書法、繪畫共四個(gè)項(xiàng)目的比賽,要求每名學(xué)生必須參加且僅參加一項(xiàng).小明隨機(jī)調(diào)查了部分學(xué)生的報(bào)名情況,根據(jù)調(diào)查結(jié)果繪制出了如下不完整的各項(xiàng)目參賽人數(shù)及比例統(tǒng)計(jì)表,請根據(jù)圖表中提供的信息,解答下列的問題:

1)本次調(diào)查中共抽取了___________名學(xué)生;

2)表中的___________________;

3)根據(jù)統(tǒng)計(jì)表中的數(shù)據(jù)和所學(xué)統(tǒng)計(jì)圖的知識,任選繪制一幅統(tǒng)計(jì)圖,能直觀反映各項(xiàng)目的參加人數(shù)或參賽人數(shù)的比例.

各項(xiàng)目參賽人數(shù)及比例統(tǒng)計(jì)表

項(xiàng)目

人數(shù)

百分比

歌詠

20

小品

60

書法

繪畫

40

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在直線L上依次擺放著七個(gè)正方形,已知斜放置的三個(gè)正方形的面積分別為1、2、3,正放置的四個(gè)正方形的面積依次是S1、S2、S3、S4 , S1+2S2+2S3+S4=(

A. 5 B. 4 C. 6 D. 10

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我市有著豐富的土地資源,適宜種植玉米,某企業(yè)已收購玉米525噸,根據(jù)市場信息,將玉米直接銷售,每噸可獲利100元;如果對玉米進(jìn)行粗加工,每天可加工8噸,每噸可獲利1000元;如果對玉米進(jìn)行精加工,每天可加工05噸,每噸可獲利5000元.由于受條件限制,在同一天中只能采取一種加工方式,并且必須在30天內(nèi)將這批玉米全部銷售,為此,研究了兩種方案.

1)方案一:將玉米全部粗加工后銷售,則可獲利 元;

2)方案二:30天時(shí)間都進(jìn)行精加工,未來得及加工的玉米,在市場上直接銷售,則可獲利 元;

3)問是否存在第三種方案,將部分玉米精加工,其余玉米粗加工,并恰好在30天內(nèi)完成?若存在,請求銷售后所獲利潤:若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了了解同學(xué)們每月零花錢的數(shù)額,校園小記者隨機(jī)調(diào)查了本校部分同學(xué),根據(jù)調(diào)查結(jié)果,繪制出了如下兩個(gè)尚不完整的統(tǒng)計(jì)圖表.

調(diào)查結(jié)果統(tǒng)計(jì)表

組別

分組(單位:元)

人數(shù)

A

0≤x<30

4

B

30≤x<60

16

C

60≤x<90

a

D

90≤x<120

b

E

x≥120

2

請根據(jù)以上圖表,解答下列問題:

(1)填空:這次被調(diào)查的同學(xué)共有__人,a+b=__,m=___;

(2)求扇形統(tǒng)計(jì)圖中扇形C的圓心角度數(shù);

(3)該校共有學(xué)生1000人,請估計(jì)每月零花錢的數(shù)額x60≤x<120范圍的人數(shù).

查看答案和解析>>

同步練習(xí)冊答案