【題目】如圖所示,寬為20米,長(zhǎng)為32米的長(zhǎng)方形地面上,修筑寬度為x米的兩條互相垂直的小路,余下的部分作為耕地,如果要在耕地上鋪上草皮,選用草皮的價(jià)格是每平米a元,
(1)求買草皮至少需要多少元?(用含a,x的式子表示)
(2)計(jì)算a=40,x=2時(shí),草皮的費(fèi)用.
【答案】(1)(640-52x+ x2)a;(2)21600元.
【解析】
(1)先求出小路的面積,再用總面積減去小路面積,得到耕地面積,再乘以草皮的價(jià)格即可得出答案;
(2)把a=40,x=2代入(1)中的代數(shù)式,即可求出草皮的費(fèi)用.
解:(1)依題意,得
32x+(20-x)x=32x+20x-x2=52x-x2(平方米),32×20-(52x-x2)=640-52x+ x2
所以買草皮至少需要(640-52x+ x2)a元;
(2)當(dāng)a=40,x=2時(shí),
(640-52x+ x2)a =(640-52×2+22)×40=21600(元).
所以當(dāng)a=40,x=2時(shí),草皮的費(fèi)用是21600元.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,一次函數(shù)y=﹣x+4的圖象與反比例函數(shù)y=(k為常數(shù),且k≠0)的圖象交于A(1,a),B兩點(diǎn).
(1)求反比例函數(shù)的表達(dá)式及點(diǎn)B的坐標(biāo);
(2)在x軸上找一點(diǎn)P,使PA+PB的值最小,求滿足條件的點(diǎn)P的坐標(biāo)及△PAB的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】a,b分別是數(shù)軸上兩個(gè)不同的點(diǎn)A,B所表示的有理數(shù),且=5,=2,A,B兩點(diǎn)在數(shù)軸上的位置如圖所示:
(1) 試確定數(shù)a,b;
(2) A,B兩點(diǎn)相距多少個(gè)單位長(zhǎng)度?
(3)若C點(diǎn)在數(shù)軸上,C點(diǎn)B點(diǎn)的距離是C點(diǎn)到A點(diǎn)距離的,求C點(diǎn)表示的數(shù);
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某服裝店用4500元購(gòu)進(jìn)一批襯衫,很快售完,服裝店老板又用2100元購(gòu)進(jìn)第二批該款式的襯衫,進(jìn)貨量是第一次的一半,但進(jìn)價(jià)每件比第一批降低了10元.
(1)這兩次各購(gòu)進(jìn)這種襯衫多少件?
(2)若第一批襯衫的售價(jià)是200元/件,老板想讓這兩批襯衫售完后的總利潤(rùn)不低于2100元,則第二批襯衫每件至少要售多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知平行四邊形ABCD中,CE平分∠BCD且交AD于點(diǎn)E,A F∥CE,且交BC于點(diǎn)F.
(1)求證:△ABF≌△CDE;
(2)如圖,若∠1=65°,求∠B的大。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】閱讀下列材料:我們知道的幾何意義是在數(shù)軸上數(shù)對(duì)應(yīng)的點(diǎn)與原點(diǎn)的距離,即,也就是說(shuō),表示在數(shù)軸上數(shù)與數(shù)對(duì)應(yīng)點(diǎn)之間的距離.這個(gè)結(jié)論可以推廣為:表示在數(shù)軸上數(shù)與對(duì)應(yīng)點(diǎn)之間的距離.
例 已知,求的值.
解:在數(shù)軸上與原點(diǎn)距離為的點(diǎn)的對(duì)應(yīng)數(shù)為和,即的值為和.
例 已知,求的值.
解:在數(shù)軸上與的距離為點(diǎn)的對(duì)應(yīng)數(shù)為和,即的值為和.
仿照閱讀材料的解法,解決下列問題:
(1)已知,求的值;
(2)已知,求的值;
(3)若數(shù)軸上表示的點(diǎn)在與之間,則的值為_________;
(4)當(dāng)滿足_________時(shí),則的值最小,最小值是_________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某商店購(gòu)進(jìn)甲、乙兩種商品,已知每件甲種商品的價(jià)格比每件乙種商品的價(jià)格貴10元,用350元購(gòu)買甲種商品的件數(shù)恰好與用300元購(gòu)買乙種商品的件數(shù)相同.
(1)求甲、乙兩種商品每件的價(jià)格各是多少元?
(2)計(jì)劃購(gòu)買這兩種商品共50件,且投入的經(jīng)費(fèi)不超過(guò)3200元,那么,最多可購(gòu)買多少件甲種商品?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】類比學(xué)習(xí):一動(dòng)點(diǎn)沿著數(shù)軸先向右平移3個(gè)單位長(zhǎng)度,再向左平移2個(gè)單位長(zhǎng)度,相當(dāng)于向右平移1個(gè)單位長(zhǎng)度.用實(shí)數(shù)加法表示為3+(-2)=1.若坐標(biāo)平面上的點(diǎn)有如下平移:沿x軸方向平移的數(shù)量為a(向右為正,向左為負(fù),平移|a|個(gè)單位長(zhǎng)度),沿y軸方向平移的數(shù)量為b(向上為正,向下為負(fù),平移|b|個(gè)單位長(zhǎng)度),則把有序數(shù)對(duì){a,b}叫做這一平移的“平移量”,“平移量”{a,b}與“平移量”{c,d}的加法運(yùn)算法則為{a,b}+{c,d}={a+c,b+d}.
解決問題:
(1)計(jì)算:{3,1}+{1,2},{1,2}+{3,1}.
(2)動(dòng)點(diǎn)P從坐標(biāo)原點(diǎn)O出發(fā),先按照“平移量”{3,1}平移到點(diǎn)A,再按照“平移量”{1,2}平移到點(diǎn)B;若先把動(dòng)點(diǎn)P按照“平移量”{1,2}平移到點(diǎn)C,再按照“平移量”{3,1}平移,最后的位置還是點(diǎn)B嗎?在圖①中畫出四邊形OABC.
(3)如圖②所示,一艘船從碼頭O出發(fā),先航行到湖心島碼頭P(2,3),再?gòu)拇a頭P航行到碼頭Q(5,5),最后回到出發(fā)點(diǎn)O.請(qǐng)用“平移量”加法算式表示它的航行過(guò)程.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com