【題目】在中,,,,,分別交直線、于點、.
(1)如圖1,當(dāng)時,求證:;
(2)如圖2,當(dāng)時,線段、、之間有何數(shù)量關(guān)系,證明你的結(jié)論;
(3)如圖3,當(dāng)時,旋轉(zhuǎn),問線段之間、、有何數(shù)量關(guān)系?證明你的結(jié)論.
【答案】(1)見解析;(2),證明見解析;(3),證明見解析
【解析】
(1)根據(jù)等腰直角三角形的性質(zhì)可得,,,然后利用ASA證出,從而證出結(jié)論;
(2)過作,,連接AO,證出,AO平分∠BAC,,從而得出OE=OF,BE=OE,將△ONF逆時針旋轉(zhuǎn),使OF和OE重合,點N落在點G處,利用SAS即可證出△MOG≌△MON,得出MN =GM,再結(jié)合正方形的性質(zhì)和等量代換即可得出結(jié)論;
(3)在上截取,連接,先利用SAS證出,從而得出,,再利用SAS證出,最后利用等量代換即可得出結(jié)論.
證明:(1)∵,,,
∴,,
∵,
∴∠AOM+∠AON=90°,∠CON+∠AON=90°
∴
在△AOM和△CON中
∴,
∴
(2)、、之間的數(shù)量關(guān)系是:
過作,,連接AO
∴四邊形為矩形
∵,,
∴,AO平分∠BAC,
∴OE=OF,BE=OE
∴四邊形為正方形,
∵
將△ONF逆時針旋轉(zhuǎn),使OF和OE重合,點N落在點G處
∴∠MOG=∠EOM+∠NOF=90°-∠MON=45°=,OG=ON,GE=FN
在△MOG和△MON中
∴△MOG≌△MON
∴MN =GM=EM+GE=
∴
而
∴
(3)
在上截取,連接
∵,,,
∴,,
在△BOM和△AOE中
∴,
∴,
∵,
∴
即,
在△MON和△EON中
∴
∴
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,已知點,,直線與軸和軸分別交于點,,若拋物線與直線有兩個不同的交點,其中一個交點在線段上(包含,兩個端點),另一個交點在線段上(包含,兩個端點),則的取值范圍是
A. B. 或C. D. 或
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列一組方程:①,②,③,…小明通過觀察,發(fā)現(xiàn)了其中蘊含的規(guī)律,并順利地求出了前三個方程的解第①個方程的解為;第②個方程的解為;第③個方程的解為.若n為正整數(shù),且關(guān)于x的方程的一個解是,則n的值等于____________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,△ABC與點O在10×10的網(wǎng)格中的位置如圖所示
(1)畫出△ABC繞點O逆時針旋轉(zhuǎn)90°后的圖形;
(2)畫出△ABC繞點O逆時針旋轉(zhuǎn)180°后的圖形;
(3)若⊙M能蓋住△ABC,則⊙M的半徑最小值為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在同一平面內(nèi),將△ABC繞A點逆時針旋轉(zhuǎn)到△ADE的位置.若AC⊥DE,∠ABD=62°,則∠ACB的度數(shù)為( )
A.56°B.44°C.34°D.40°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】慧秀中學(xué)在防“非典”知識競賽中,評出一等獎4人,二等獎6人,三等獎20人,學(xué)校決定給所有獲獎學(xué)生各發(fā)一份獎品,同一等次的獎品相同.
(1)若一等獎,二等獎、三等獎的獎品分別是噴壺、口罩和溫度計,購買這三種獎品共計花費113元,其中購買噴壺的總錢數(shù)比購買口罩的總錢數(shù)多9元,而口罩的單價比溫度計的單價多2元,求噴壺、口罩和溫度計的單價各是多少元?
(2)若三種獎品的單價都是整數(shù),且要求一等獎的單價是二等獎單價的2倍,二等獎的單價是三等獎單價的2倍,在總費用不少于90元而不足150元的前提下,購買一、二、三等獎獎品時它們的單價有幾種情況,分別求出每種情況中一、二、三等獎獎品的單價.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC.以AB為直徑的⊙O分別與BC、AC相交于點D、E,連接AD.過點D作DF⊥AC,垂足為點F,
(1)求證:DF是⊙O的切線;
(2)若⊙O的半徑為4,∠CDF=22.5°,求圖中陰影部分的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,為了改造小區(qū)環(huán)境,某小區(qū)決定要在一塊一邊靠墻(墻的最大可使用長度12m)的空地上建造一個矩形綠化帶.除靠墻一邊(AD)外,用長為32m的柵欄圍成矩形ABCD.設(shè)綠化帶寬AB為xm,面積為Sm2,
(1)求S與x的函數(shù)關(guān)系式,并直接寫出x的取值范圍;
(2)綠化帶的面積能達到128m2嗎?若能,請求出AB的長度;若不能,請說明理由;
(3)當(dāng)x為何值時,滿足條件的綠化帶面積最大.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知正方形ABCD,P為射線AB上的一點,以BP為邊作正方形BPEF,使點F在線段CB的延長線上,連接EA、EC.
(1)如圖1,若點P在線段AB的延長線上,求證:EA=EC;
(2)若點P在線段AB上,如圖2,當(dāng)點P為AB的中點時,判斷△ACE的形狀,并說明理由;
(3)在(1)的條件下,將正方形ABCD固定,正方形BPEF繞點B旋轉(zhuǎn)一周,設(shè)AB=4,BP=a,若在旋轉(zhuǎn)過程中△ACE面積的最小值為4,請直接寫出a的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com