【題目】如圖,已知△ABC中,AB=AC,∠A=30°,AB=16,以AB為直徑的⊙O與BC邊相交于點(diǎn)D,與AC交于點(diǎn)F,過(guò)點(diǎn)D作DE⊥AC于點(diǎn)E.
(1)求證:DE是⊙O的切線;
(2)求CE的長(zhǎng);
(3)過(guò)點(diǎn)B作BG∥DF,交⊙O于點(diǎn)G,求弧BG的長(zhǎng).
【答案】(1)證明見(jiàn)解析(2)8-4(3)4π
【解析】
(1)如圖1,連接AD,OD,由AB為⊙O的直徑,可得AD⊥BC,再根據(jù)AB=AC,可得BD=DC,再根據(jù)OA=OB,則可得OD∥AC,繼而可得DE⊥OD,問(wèn)題得證;
(2)如圖2,連接BF,根據(jù)已知可推導(dǎo)得出DE=BF,CE=EF,根據(jù)∠A=30°,AB=16,可得BF=8,繼而得DE=4,由DE為⊙O的切線,可得ED2=EFAE,即42=CE(16﹣CE),繼而可求得CE長(zhǎng);
(3)如圖3,連接OG,連接AD,由BG∥DF,可得∠CBG=∠CDF=30°,再根據(jù)AB=AC,可推導(dǎo)得出∠OBG=45°,由OG=OB,可得∠OGB=45°,從而可得∠BOG=90°,根據(jù)弧長(zhǎng)公式即可求得的長(zhǎng)度.
(1)如圖1,連接AD,OD;
∵AB為⊙O的直徑,
∴∠ADB=90°,即AD⊥BC,
∵AB=AC,
∴BD=DC,
∵OA=OB,
∴OD∥AC,
∵DE⊥AC,
∴DE⊥OD,
∴∠ODE=∠DEA=90°,
∴DE為⊙O的切線;
(2)如圖2,連接BF,
∵AB為⊙O的直徑,
∴∠AFB=90°,
∴BF∥DE,
∵CD=BD,
∴DE=BF,CE=EF,
∵∠A=30°,AB=16,
∴BF=8,
∴DE=4,
∵DE為⊙O的切線,
∴ED2=EFAE,
∴42=CE(16﹣CE),
∴CE=8﹣4,CE=8+4(不合題意舍去);
(3)如圖3,連接OG,連接AD,
∵BG∥DF,
∴∠CBG=∠CDF=30°,
∵AB=AC,
∴∠ABC=∠C=75°,
∴∠OBG=75°﹣30°=45°,
∵OG=OB,
∴∠OGB=∠OBG=45°,
∴∠BOG=90°,
∴的長(zhǎng)度==4π.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知在等腰△ABC中,AB=AC=,BC=4,點(diǎn)D從A出發(fā)以每秒個(gè)單位的速度向點(diǎn)B運(yùn)動(dòng),同時(shí)點(diǎn)E從點(diǎn)B出發(fā)以每秒4個(gè)單位的速度向點(diǎn)C運(yùn)動(dòng),在DE的右側(cè)作∠DEF=∠B,交直線AC于點(diǎn)F,設(shè)運(yùn)動(dòng)的時(shí)間為t秒,則當(dāng)△ADF是一個(gè)以AD為腰的等腰三角形時(shí),t的值為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在中,.
⑴已知線段AB的垂直平分線與BC邊交于點(diǎn)P,連結(jié)AP,求證:;
⑵以點(diǎn)B為圓心,線段AB的長(zhǎng)為半徑畫(huà)弧,與BC邊交于點(diǎn)Q,連結(jié)AQ,若,求的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】有甲乙兩名采購(gòu)員去同一家飼料公司分別購(gòu)買(mǎi)兩次飼料,兩次購(gòu)買(mǎi)飼料價(jià)格分別為m元/千克和n元/千克,且m≠n,兩名采購(gòu)員的采購(gòu)方式也不同,其中甲每次購(gòu)買(mǎi)1000千克,乙每次用去800元,而不管購(gòu)買(mǎi)多少飼料.
(1)甲、乙所購(gòu)飼料的平均單價(jià)各是多少?(用字母m、n表示)
(2)誰(shuí)的購(gòu)貨方式更合算?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】
在如圖所示的方格紙中,△ABC的頂點(diǎn)都在小正方形的頂點(diǎn)上,以小正方形互相垂直的兩邊所在直線建立直角坐標(biāo)系.
(1)作出△ABC關(guān)于y軸對(duì)稱的△A1B1C1,其中A,B,C分別和A1,B1,C1對(duì)應(yīng);
(2)平移△ABC,使得A點(diǎn)在x軸上,B點(diǎn)在y軸上,平移后的三角形記為△A2B2C2,作出平移后的△A2B2C2,其中A,B,C分別和A2,B2,C2對(duì)應(yīng);
(3)填空:在(2)中,設(shè)原△ABC的外心為M,△A2B2C2的外心為M,則M與M2之間的距離為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在等腰中,,,是邊上的中點(diǎn),點(diǎn)、分別在、邊上運(yùn)動(dòng),且始終保持.連接、、.
(1)求證:;
(2)試證明是等腰直角三角形;
(3)若,,求的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,一次函數(shù)y=kx+b分別交y軸、x軸于C、D兩點(diǎn),與反比例函數(shù)y=(x>0)的圖象交于A(m,8),B(4,n)兩點(diǎn).
(1)求一次函數(shù)的解析式;
(2)根據(jù)圖象直接寫(xiě)出kx+b﹣<0的x的取值范圍;
(3)求△AOB的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】作圖題:已知∠MAB=60°,以AB的長(zhǎng)為菱形ABCD的邊長(zhǎng),點(diǎn)D在AM上,
(1)作出這個(gè)菱形.(保留作圖痕跡,不寫(xiě)作法,不用證明)
(2)若AB=2,則對(duì)角線AC的長(zhǎng)為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某中學(xué)開(kāi)展以“我最?lèi)?ài)的職業(yè)”為主的調(diào)查活動(dòng),通過(guò)對(duì)學(xué)生的隨機(jī)抽樣調(diào)查得到一組數(shù)據(jù),下面兩圖是根據(jù)這組數(shù)據(jù)繪制的兩幅不完整的統(tǒng)計(jì)圖,請(qǐng)你根據(jù)圖中提供的信息解答下列各題:
(1)求在這次活動(dòng)中,一共調(diào)查了多少名學(xué)生?
(2)在扇形統(tǒng)計(jì)圖中,求“教師”所在扇形的圓心角的度數(shù);
(3)補(bǔ)全折線統(tǒng)計(jì)圖.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com