【題目】如圖所示,在梯形ABCD中,AB∥DC , EF是梯形的中位線(xiàn),AC交EF于G , BD交EF于H , 以下說(shuō)法錯(cuò)誤的是( 。
A.AB∥EF
B.AB+DC=2EF
C.四邊形AEFB和四邊形ABCD相似
D.EG=FH
【答案】C
【解析】解答:AB∥DC , EF是梯形的中位線(xiàn),∴AB∥EF , AB+DC=2EF , 故A、B選項(xiàng)結(jié)論正確,
∵EF是梯形的中位線(xiàn),
∴點(diǎn)G、H分別是AC、BD的中點(diǎn),
∴EG=FH= CD , D選項(xiàng)結(jié)論正確,
∵ , ,
∴四邊形AEFB和四邊形ABCD一定不相似,故C選項(xiàng)錯(cuò)誤 .
故選C.
分析:因?yàn)樗倪呅?/span>ABCD是平行四邊形,所以OA=OC;又因?yàn)辄c(diǎn)E是BC的中點(diǎn),所以OE是△ABC的中位線(xiàn),由OE=3cm , 即可求得AB=6cm .
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,CD⊥AB于點(diǎn)D , 如果AC=3,AB=6,那么AD的值為( 。
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖①所示,將直尺擺放在三角板上,使直尺與三角板的邊分別交于點(diǎn)D , E , F , G , 已知∠CGD=42°
(1)求∠CEF的度數(shù);
(2)將直尺向下平移,使直尺的邊緣通過(guò)三角板的頂點(diǎn)B , 交AC邊于點(diǎn)H , 如圖②所示,點(diǎn)H , B在直尺上的度數(shù)分別為4,13.4,求BC的長(zhǎng)(結(jié)果保留兩位小數(shù)).(參考數(shù)據(jù):sin42°≈0.67,cos42°≈0.74,tan42°≈0.90)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC中,AD是BC邊上的高線(xiàn),BE是一條角平分線(xiàn),它們相交于點(diǎn)P , 已知∠EPD=125°,求∠BAD的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,點(diǎn)D、E分別是邊AB,BC的中點(diǎn).若△DBE的周長(zhǎng)是6,則△ABC的周長(zhǎng)是( 。
A.8
B.10
C.12
D.14
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,在平行四邊形ABCD中,BC=4cm , E為AD的中點(diǎn),F、G分別為BE、CD的中點(diǎn),則FG=( 。cm .
A.2
B.3
C.4
D.5
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC中,AD是中線(xiàn),AE是角平分線(xiàn),CF⊥AE于F , AB=5,AC=2,則DF的長(zhǎng)為.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】正方形ABCD中,E是AC上一點(diǎn),EF⊥AB , EG⊥AD , AB=6,AE:EC=2:1.求四邊形AFEG的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,Rt△OAB的頂點(diǎn)A(﹣2,4)在拋物線(xiàn)y=ax2上,將Rt△OAB繞點(diǎn)O順時(shí)針旋轉(zhuǎn)90°,得到△OCD,邊CD與該拋物線(xiàn)交于點(diǎn)P,則點(diǎn)P的坐標(biāo)為( )
A.( , )
B.(2,2)
C.( ,2)
D.(2, )
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com