分析 結(jié)論:∠OEP=∠ODP或∠OEP+∠ODP=180?以O(shè)為圓心,以O(shè)D為半徑作弧,交OB于E2,連接PE2,由△E2OP≌△DOP(SAS),推出E2P=PD,即此時(shí)點(diǎn)E2符合條件,此時(shí)∠OE2P=∠ODP;以P為圓心,以PD為半徑作弧,交OB于另一點(diǎn)E1,連接PE1,則此點(diǎn)E1也符合條件PD=PE1,由PE2=PE1=PD,
推出∠PE2E1=∠PE1E2,由∠OE1P+∠E2E1P=180°,∠OE2P=∠ODP,推出∠OE1P+∠ODP=180°,
解答 解:結(jié)論:∠OEP=∠ODP或∠OEP+∠ODP=180°.
理由是:以O(shè)為圓心,以O(shè)D為半徑作弧,交OB于E2,連接PE2,
∵在△E2OP和△DOP中,
$\left\{\begin{array}{l}{O{E}_{2}=OD}\\{∠{E}_{2}OP=∠DOP}\\{OP=OP}\end{array}\right.$,
∴△E2OP≌△DOP(SAS),
∴E2P=PD,
即此時(shí)點(diǎn)E2符合條件,此時(shí)∠OE2P=∠ODP;
以P為圓心,以PD為半徑作弧,交OB于另一點(diǎn)E1,連接PE1,
則此點(diǎn)E1也符合條件PD=PE1,
∵PE2=PE1=PD,
∴∠PE2E1=∠PE1E2,
∵∠OE1P+∠E2E1P=180°,
∵∠OE2P=∠ODP,
∴∠OE1P+∠ODP=180°,
∴∠OEP與∠ODP所有可能的數(shù)量關(guān)系是:∠OEP=∠ODP或∠OEP+∠ODP=180°,
點(diǎn)評(píng) 本題考查全等三角形的判定和性質(zhì),等腰三角形的判定和性質(zhì)等知識(shí),解題的關(guān)鍵是學(xué)會(huì)添加常用輔助線,屬于中考?碱}型.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
第一次 | 第二次 | |
甲種車(chē)輛數(shù)單位(輛) | 2 | 5 |
乙種車(chē)輛數(shù)單位(輛) | 3 | 6 |
累計(jì)運(yùn)貨數(shù)單位(噸) | 15.5 | 35 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com