如圖①,已知拋物線y=ax2+bx+c經(jīng)過點A(0,3),B(3,0),C(4,3).
(1)求拋物線的函數(shù)表達式;
(2)求拋物線的頂點坐標和對稱軸;
(3)把拋物線向上平移,使得頂點落在x軸上,直接寫出兩條拋物線、對稱軸和y軸圍成的圖形的面積S(圖②中陰影部分).
分析:(1)把點A、B、C代入拋物線解析式y(tǒng)=ax2+bx+c利用待定系數(shù)法求解即可;
(2)把拋物線解析式整理成頂點式形式,然后寫出頂點坐標與對稱軸即可;
(3)根據(jù)頂點坐標求出向上平移的距離,再根據(jù)陰影部分的面積等于平行四邊形的面積,列式進行計算即可得解.
解:(1)∵拋物線y=ax2+bx+c經(jīng)過點A(0,3),B(3,0),C(4,3),
∴,解得,
所以拋物線的函數(shù)表達式為y=x2﹣4x+3;
(2)∵y=x2﹣4x+3=(x﹣2)2﹣1,∴拋物線的頂點坐標為(2,﹣1),對稱軸為直線x=2;
(3)如圖,∵拋物線的頂點坐標為(2,﹣1),∴PP′=1,
陰影部分的面積等于平行四邊形A′APP′的面積,
平行四邊形A′APP′的面積=1×2=2,
∴陰影部分的面積=2.
點評:本題考查了待定系數(shù)法求二次函數(shù)解析式,二次函數(shù)的性質(zhì),二次函數(shù)圖象與幾何變換,(3)根據(jù)平移的性質(zhì),把陰影部分的面積轉(zhuǎn)化為平行四邊形的面積是解題的關(guān)鍵.
科目:初中數(shù)學 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
1 |
2 |
2 |
1 |
3 |
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com