【題目】為響應(yīng)學(xué)雷鋒、樹新風(fēng)、做文明中學(xué)生號召,某校開展了志愿者服務(wù)活動,活動項目有戒毒宣傳”、“文明交通崗”、“關(guān)愛老人”、“義務(wù)植樹”、“社區(qū)服務(wù)等五項,活動期間,隨機(jī)抽取了部分學(xué)生對志愿者服務(wù)情況進(jìn)行調(diào)查,結(jié)果發(fā)現(xiàn),被調(diào)查的每名學(xué)生都參與了活動,最少的參與了1項,最多的參與了5項,根據(jù)調(diào)查結(jié)果繪制了如圖所示不完整的折線統(tǒng)計圖和扇形統(tǒng)計圖.

(1)被隨機(jī)抽取的學(xué)生共有多少名?

(2)在扇形統(tǒng)計圖中,求活動數(shù)為3項的學(xué)生所對應(yīng)的扇形圓心角的度數(shù),并補(bǔ)全折線統(tǒng)計圖;

(3)該校共有學(xué)生2000人,估計其中參與了4項或5項活動的學(xué)生共有多少人?

【答案】(1)被隨機(jī)抽取的學(xué)生共有50;(2)活動數(shù)為3項的學(xué)生所對應(yīng)的扇形圓心角為72°,(3)參與了4項或5項活動的學(xué)生共有720

【解析】(1)利用活動數(shù)為2項的學(xué)生的數(shù)量以及百分比,即可得到被隨機(jī)抽取的學(xué)生數(shù);

(2)利用活動數(shù)為3項的學(xué)生數(shù),即可得到對應(yīng)的扇形圓心角的度數(shù),利用活動數(shù)為5項的學(xué)生數(shù),即可補(bǔ)全折線統(tǒng)計圖;

(3)利用參與了4項或5項活動的學(xué)生所占的百分比,即可得到全校參與了4項或5項活動的學(xué)生總數(shù).

1)被隨機(jī)抽取的學(xué)生共有14÷28%=50(人);

(2)活動數(shù)為3項的學(xué)生所對應(yīng)的扇形圓心角=×360°=72°,

活動數(shù)為5項的學(xué)生為:50﹣8﹣14﹣10﹣12=6,

如圖所示:

(3)參與了4項或5項活動的學(xué)生共有×2000=720(人).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線y=3x與雙曲線y= (k≠0,且x>0)交于點A,點A的橫坐標(biāo)是1.

(1)求點A的坐標(biāo)及雙曲線的解析式;
(2)點B是雙曲線上一點,且點B的縱坐標(biāo)是1,連接OB,AB,求△AOB的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,不添加輔助線,請寫出一個能判斷EB∥AC的條件:___________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD是正方形,BE⊥BF,BE=BF,EF與BC交于點G.

(1)求證:AE=CF;

(2)若∠ABE=55°,求∠EGC的大。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一批單價為20元的商品,若每件按30元的價格銷售時,每天能賣出60件;若每件按50元的價格銷售時,每天能賣出20件,假定每天銷售件數(shù)y(件)與銷售價格x(元/件)滿足y=kx+b.
(1)求y與x滿足的函數(shù)關(guān)系式(不要求寫出x的取值范圍);
(2)在不考慮其他因素的情況下,每件商品銷售價格定為多少元時才能使每天獲得的利潤最大?最大利潤是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖(1)四邊形ABCD中,已知∠ABC+ADC180°,ABAD,DAAB,點ECD的延長線上,∠BAC=∠DAE

1)求證:△ABC≌△ADE;

2)求證:CA平分∠BCD;

3)如圖(2),設(shè)AF是△ABCBC邊上的高,求證:EC2AF

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在橫線上完成下面的證明,并在括號內(nèi)注明理由.

已知:如圖,∠ABC+BGD180°,∠1=∠2

求證:EFDB

證明:∵∠ABC+BGD180°,(已知)

   .(   

∴∠1=∠3.(   

又∵∠1=∠2,(已知)

   .(   

EFDB.(   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC中,AB=AC,AD是∠BAC的平分線,AE是∠BAC的外角的平分線,CE⊥AE于點E. 求證:四邊形ADCE是矩形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】ABC中,∠A=B=ACBCDABC的高,CE是∠ACB的角平分線,求∠DCE的度數(shù)。

查看答案和解析>>

同步練習(xí)冊答案