【題目】如圖:在△ABC中,∠ACB=90°,AC=BC,∠PCQ=45°,把∠PCQ繞點(diǎn)C旋轉(zhuǎn),在整個(gè)旋轉(zhuǎn)過(guò)程中,過(guò)點(diǎn)A作AD⊥CP,垂足為D,直線AD交CQ于E.
(1)如圖①,當(dāng)∠PCQ在∠ACB內(nèi)部時(shí),求證:AD+BE=DE;
(2)如圖②,當(dāng)CQ在∠ACB外部時(shí),則線段AD、BE與DE的關(guān)系為_____;
(3)在(1)的條件下,若CD=6,S△BCE=2S△ACD,求AE的長(zhǎng).
【答案】(1)見(jiàn)解析 (2)AD=BE+DE (3)8
【解析】試題分析:(1)延長(zhǎng)DA到F,使DF=DE,根據(jù)線段垂直平分線上的點(diǎn)到線段兩端點(diǎn)的距離相等可得CE=CF,再求出∠ACF=∠BCE,然后利用“邊角邊”證明△ACF和△BCE全等,根據(jù)全等三角形的即可證明AF=BE,從而得證;
(2)在AD上截取DF=DE,然后根據(jù)線段垂直平分線上的點(diǎn)到線段兩端點(diǎn)的距離相等可得CE=CF,再求出∠ACF=∠BCE,然后利用“邊角邊”證明△ACF和△BCE全等,根據(jù)全等三角形的即可證明AF=BE,從而得到AD=BE+DE;
(3)根據(jù)等腰直角三角形的性質(zhì)求出CD=DF=DE,再根據(jù)等高的三角形的面積的比等于底邊的比求出AF=2AD,然后求出AD的長(zhǎng),再根據(jù)AE=AD+DE代入數(shù)據(jù)進(jìn)行計(jì)算即可得解.
試題解析:(1)證明:如圖①,延長(zhǎng)DA到F,使DF=DE.∵CD⊥AE,∴CE=CF,∴∠DCE=∠DCF=∠PCQ=45°,∴∠ACD+∠ACF=∠DCF=45°.又∵∠ACB=90°,∠PCQ=45°,∴∠ACD+∠BCE=90°﹣45°=45°,∴∠ACF=∠BCE.在△ACF和△BCE中,∵,∴△ACF≌△BCE(SAS),∴AF=BE,∴AD+BE=AD+AF=DF=DE,即AD+BE=DE;
(2)解:如圖②,在AD上截取DF=DE.∵CD⊥AE,∴CE=CF,∴∠DCE=∠DCF=∠PCQ=45°,∴∠ECF=∠DCE+∠DCF=90°,∴∠BCE+∠BCF=∠ECF=90°.又∵∠ACB=90°,∴∠ACF+∠BCF=90°,∴∠ACF=∠BCE.在△ACF和△BCE中,∵,∴△ACF≌△BCE(SAS),∴AF=BE,∴AD=AF+DF=BE+DE,即AD=BE+DE;
故答案為:AD=BE+DE.
(3)∵∠DCE=∠DCF=∠PCQ=45°,∴∠ECF=45°+45°=90°,∴△ECF是等腰直角三角形,∴CD=DF=DE=6.∵S△BCE=2S△ACD,∴AF=2AD,∴AD=×6=2,∴AE=AD+DE=2+6=8.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,每個(gè)小正方形的邊長(zhǎng)為1個(gè)單位長(zhǎng)度.
(1)作出△ABC關(guān)于原點(diǎn)對(duì)稱的△A1B1C1,并寫(xiě)出A1,B1,C1的坐標(biāo).
(2)y軸上有一點(diǎn)Q,使AQ+CQ的值最小,求點(diǎn)Q的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)第中有一個(gè)2×2的正方形網(wǎng)格,每個(gè)格點(diǎn)的橫、縱坐標(biāo)均為整數(shù),已知點(diǎn)A(1,2).作直線OA并向右平移k個(gè)單位,要使分布在平移后的直線兩側(cè)的格點(diǎn)數(shù)相同,則k的值為( )
A.B.C.D.1
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】李老師為了了解學(xué)生暑期在家的閱讀情況,隨機(jī)調(diào)查了20名學(xué)生某一天的閱讀小時(shí)數(shù),具體情況統(tǒng)計(jì)如下:
閱讀時(shí)間 (小時(shí)) | 2 | 2.5 | 3 | 3.5 | 4 |
學(xué)生人數(shù)(名) | 1 | 2 | 8 | 6 | 3 |
則關(guān)于這20名學(xué)生閱讀小時(shí)數(shù)的說(shuō)法正確的是( 。
A. 眾數(shù)是8 B. 中位數(shù)是3 C. 平均數(shù)是3 D. 方差是0.34
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某商場(chǎng)將每件進(jìn)價(jià)為80元的某種商品原來(lái)按每件100元出售,一天可售出100件.后來(lái)經(jīng)過(guò)市場(chǎng)調(diào)查,發(fā)現(xiàn)這種商品單價(jià)每降低1元,其銷量可增加10件.
(1)求商場(chǎng)經(jīng)營(yíng)該商品原來(lái)一天可獲利潤(rùn)多少元?
(2)設(shè)后來(lái)該商品每件降價(jià)x元,,商場(chǎng)一天可獲利潤(rùn)y元.
①若商場(chǎng)經(jīng)營(yíng)該商品一天要獲利潤(rùn)2160元,則每件商品應(yīng)降價(jià)多少元?
②求出y與x之間的函數(shù)關(guān)系式,結(jié)合題意寫(xiě)出當(dāng)x取何值時(shí),商場(chǎng)獲利潤(rùn)不少于2160元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】小明從家出發(fā),外出散步,到一個(gè)公共閱報(bào)欄前看了一會(huì)報(bào)后,繼續(xù)散步了一段時(shí)間,然后回家,如圖描述了小明在散步過(guò)程匯總離家的距離s(米)與散步所用時(shí)間t(分)之間的函數(shù)關(guān)系,根據(jù)圖象,下列信息錯(cuò)誤的是( )
A.小明看報(bào)用時(shí)8分鐘
B.公共閱報(bào)欄距小明家200米
C.小明離家最遠(yuǎn)的距離為400米
D.小明從出發(fā)到回家共用時(shí)16分鐘
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知一次函數(shù)y=2x+a與y=-x+b的圖象都經(jīng)過(guò)點(diǎn)A(-2,0)且與y軸分別交于B,C兩點(diǎn)
(1)分別求出這兩個(gè)一次函數(shù)的解析式
(2)求△ABC的面積
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,兩正方形彼此相鄰且內(nèi)接于半圓,若小正方形的面積為16cm2,則該半圓的半徑為()
A. cm B. 9 cm
C. cm D. cm
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,已知AB=AC,AB的垂直平分線交AB于點(diǎn)N,交AC于點(diǎn)M,連接MB.
(1)若∠ABC=70°,則∠NMA的度數(shù)是 度.
(2)若AB=8cm,△MBC的周長(zhǎng)是14cm.
①求BC的長(zhǎng)度;
②若點(diǎn)P為直線MN上一點(diǎn),請(qǐng)你直接寫(xiě)出△PBC周長(zhǎng)的最小值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com