【題目】邊長(zhǎng)為a的正方形ABCD中,點(diǎn)E是BD上一點(diǎn),過點(diǎn)E作EF⊥AE交射線CB于點(diǎn)F,連結(jié)CE.
(1)若點(diǎn)F在邊BC上(如圖);
①求證:CE=EF;
②若BC=2BF,求DE的長(zhǎng).
(2)若點(diǎn)F在CB延長(zhǎng)線上,BC=2BF,請(qǐng)直接寫出DE的長(zhǎng).
【答案】(1)①證明見解析;②DE=;(2)DE=.
【解析】
(1)①根據(jù)正方形的軸對(duì)稱性可得△ABE≌△CBE,從而可得∠BAE=∠BCE,再根據(jù)∠ABC=∠AEF=90°,可得∠BAE=∠EFC,繼而可得∠BCE=∠EFC,根據(jù)等角對(duì)等邊即可得CE=EF;
②過點(diǎn)E作MN⊥BC,垂直為N,交AD于M,根據(jù)等腰三角形的性質(zhì)結(jié)合已知條件可得,再根據(jù)四邊形CDMN是矩形,△DME為等腰直角三角形,繼而可求得ED的長(zhǎng);
(2)如圖所示:過點(diǎn)E作MN⊥BC,垂直為N,交AD于M,由正方形的對(duì)稱性可得△ABE≌△CBE,從而得∠BAE=∠BCE,繼而由已知可得CE=EF,可得FN=CN,根據(jù)BC=2BF,可得FC=a,繼而可得EN=BN=a,由此即可求得DE=a.
(1)①∵正方形ABCD關(guān)于BD對(duì)稱,
∴△ABE≌△CBE,
∴∠BAE=∠BCE.
又∵∠ABC=∠AEF=90°,
∴∠BAE=∠EFC,
∴∠BCE=∠EFC,
∴CE=EF;
②過點(diǎn)E作MN⊥BC,垂直為N,交AD于M,
∵CE=EF,
∴N是CF的中點(diǎn),
∵BC=2BF,
∴,
又∵四邊形CDMN是矩形,△DME為等腰直角三角形,
∴CN=DM=ME,
∴ED=DM=CN=a;
(2)如圖所示:過點(diǎn)E作MN⊥BC,垂直為N,交AD于M,
∵正方形ABCD關(guān)于BD對(duì)稱,
∴△ABE≌△CBE,
∴∠BAE=∠BCE.
又∵∠ABF=∠AEF=90°,
∴∠BAE=∠EFC,
∴∠BCE=∠EFC,
∴CE=EF.
∴FN=CN.
又∵BC=2BF,
∴FC=a,
∴CN=a,
∴EN=BN=a,
∴DE=a.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知△ABC中,∠BAC=90°,AB=AC,D、E是BC邊上的點(diǎn),將△ABD繞點(diǎn)A旋轉(zhuǎn),得到△ACD′.
(1)求∠DAD′的度數(shù)。
(2)當(dāng)∠DAE=45°時(shí),求證:DE=D′E;
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,點(diǎn)O在對(duì)角線AC上,以OA的長(zhǎng)為半徑的⊙O與AD,AC分別交于點(diǎn)E,F(xiàn),且∠ACB=∠DCE,tan∠ACB=,BC=2cm.以下結(jié)論:
①CD=cm; ②AE=DE; ③CE是⊙O的切線; ④⊙O的面積等于cm2.其中正確的結(jié)論有_____.(填序號(hào))
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD中,∠ABC=Rt∠.已知∠A=α,外角∠DCE=β,BC=a,CD=b,則下列結(jié)論錯(cuò)誤的是( 。
A. ∠ADC=90°﹣α+β B. 點(diǎn)D到BE的距離為bsinβ
C. AD= D. 點(diǎn)D到AB的距離為a+bcosβ
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)校為了解本校九年級(jí)學(xué)生期末考試數(shù)學(xué)成續(xù)情況,決定進(jìn)行抽樣分析,已知該校九年級(jí)共有10個(gè)班,每班40名學(xué)生,請(qǐng)根據(jù)要求回答下列問題:
(1)若要從全年級(jí)學(xué)生中抽取一個(gè)40人的樣本,你認(rèn)為以下抽樣方法中比較合理的有 .(只要填寫序號(hào))
①隨機(jī)抽取一個(gè)班級(jí)的學(xué)生;②在全年級(jí)學(xué)生中隨機(jī)抽取40名男學(xué)生:③在全年級(jí)10個(gè)班中各隨機(jī)抽取4名學(xué)生.
(2)將抽取的40名學(xué)生的數(shù)學(xué)成績(jī)進(jìn)行分組,并繪制頻數(shù)表和成分布統(tǒng)計(jì)圖(不完整)如表格、圖:①C、D類圓心角度數(shù)分別為 ;②估計(jì)全年級(jí)A、B類學(xué)生人數(shù)大約共有 .
成績(jī)(單位:分) | 頻數(shù) | 頻率 |
A類(80~100) | 0.3 | |
B類(60~79) | 0.4 | |
C類(40~59) | 8 | |
D類(0~39) | 4 |
(3)學(xué)校為了解其他學(xué)校數(shù)學(xué)成績(jī)情況,將同層次的G學(xué)校和J學(xué)校的抽樣數(shù)據(jù)進(jìn)行對(duì)比,得下表:你認(rèn)為哪所學(xué)校教學(xué)效果較好?說明你的理由.
學(xué)校 | 平均數(shù)(分) | 方差 | A、B類頻率和 |
G學(xué)校 | 87 | 520 | 0.7 |
J學(xué)校 | 87 | 478 | 0.65 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,菱形ABCD中,∠A是銳角,E為邊AD上一點(diǎn),△ABE沿著BE折疊,使點(diǎn)A的對(duì)應(yīng)點(diǎn)F恰好落在邊CD上,連接EF,BF.
(1)若∠A=70°,請(qǐng)直接寫出∠ABF的度數(shù).
(2)若點(diǎn)F是CD的中點(diǎn),
①求sinA的值;
②求證:S△ABE=SABCD.
(3)設(shè)=k, =m,試用含k的代數(shù)式表示m.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD中,AB=20,BC=15,CD=7,AD=24,∠B=90°.
(1)判斷∠D是否是直角,并說明理由.
(2)求四邊形ABCD的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知△ABC中,a、b、c分別是∠A、∠B、∠C的對(duì)邊,下列條件不能判斷△ABC是直角三角形的是( 。
A.∠A:∠B:∠C=3:4:5B.a:b:c=7:24:25
C.a2=b2﹣c2D.∠A=∠C﹣∠B
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠A=90°,AB=6cm,AC=8cm,以斜邊BC上距離B點(diǎn)6cm的點(diǎn)P為中心,把這個(gè)三角形按逆時(shí)針方向旋轉(zhuǎn)90°至△DEF,則旋轉(zhuǎn)前后兩個(gè)三角形重疊部分的面積是_______cm2.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com