【題目】某學(xué)生為測量一棵大樹AH及其樹葉部分AB的高度,將測角儀放在F處測得大樹頂端A的仰角為30°,放在G處測得大樹頂端A的仰角為60°,樹葉部分下端B的仰角為45°,已知點(diǎn)F、G與大樹底部H共線,點(diǎn)F、G相距15米,測角儀高度為1.5米.求該樹的高度AH和樹葉部分的高度AB.
【答案】AH的高度是()米,AB的高度是米.
【解析】
設(shè)CD=x米,可得AC=,因?yàn)?/span>Rt△ACE,所以EC=3x,然后求出x的值,可以得到AC,AH的值,最后根據(jù)Rt△BCD,得出AB的值.
解:由題意可知∠AEC=30°,∠ADC=60°,∠BDC=45°,FG=15.
設(shè)CD=x米,則在Rt△ACD中,由 得AC=.
又Rt△ACE中,由得EC=3x.
∴3x=15+x.
∴x=7.5.
∴AC=.∴AH=.
∵在Rt△BCD中,∠BDC=45°,∴BC=DC=7.5.∴AB=AC﹣BC=.
答:AH的高度是()米,AB的高度是米.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,AB=3,BC=4,將對角線AC繞對角線交點(diǎn)O旋轉(zhuǎn),分別交邊AD、BC于點(diǎn)E、F,點(diǎn)P是邊DC上的一個(gè)動點(diǎn),且保持DP=AE,連接PE、PF,設(shè)AE=x(0<x<3).
(1)填空:PC= ,FC= 。(用含x的代數(shù)式表示)
(2)求△PEF面積的最小值;
(3)在運(yùn)動過程中,PE⊥PF是否成立?若成立,求出x的值;若不成立,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知⊙O的直徑AE=10cm,∠B=∠EAC,則AC的長為( )
A. 5cm B. 5cm C. 5 cm D. 6cm
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知直線AC的表達(dá)式為y=x+8,點(diǎn)P從點(diǎn)A開始沿AO向點(diǎn)O以1個(gè)單位/s的速度移動,點(diǎn)Q從點(diǎn)O開始沿OC向點(diǎn)C以2個(gè)單位/s的速度移動.如果P,Q兩點(diǎn)分別從點(diǎn)A,O同時(shí)出發(fā),經(jīng)過幾秒能使△PQO的面積為8個(gè)平方單位?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明坐于堤邊垂釣,如圖,河堤的坡角為,長為米,釣竿的傾斜角是,其長為米,若與釣魚線的夾角為,求浮漂與河堤下端之間的距離.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】圖①,②是曉東同學(xué)在進(jìn)行“居民樓高度、樓間距對住戶采光影響問題”的研究時(shí)畫的兩個(gè)示意圖.請你閱讀相關(guān)文字,解答下面的問題.
(1)圖①是太陽光線與地面所成角度的示意圖.冬至日正午時(shí)刻,太陽光線直射在南回歸線(南緯23.5)B地上.在地處北緯36.5的A地,太陽光線與地面水平線l所成的角為,試借助圖①,求的度數(shù).
(2)圖②是乙樓高度、樓間距對甲樓采光影響的示意圖.甲樓地處A地,其二層住戶的南面窗戶下沿距地面3.4米.現(xiàn)要在甲樓正南面建一幢高度為22.3米的乙樓,為不影響甲樓二層住戶(一層為車庫)的采光,兩樓之間的距離至少應(yīng)為多少米?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】對非負(fù)實(shí)數(shù)x“四舍五入”到個(gè)位的值記為[x].即當(dāng)n為非負(fù)整數(shù)時(shí),若n﹣≤x<n+,則[x]=n.如:[2.9]=3;[2.4]=2;……根據(jù)以上材料,解決下列問題:
(1)填空[1.8]= ,[]= ;
(2)若[2x+1]=4,則x的取值范圍是 ;
(3)求滿足[x]=x﹣1的所有非負(fù)實(shí)數(shù)x的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“校園安全”受到全社會的廣泛關(guān)注,我市某中學(xué)對部分學(xué)生就校園安全知識的了解程度,采用隨機(jī)抽樣調(diào)查的方式,并根據(jù)收集到的信息進(jìn)行統(tǒng)計(jì),繪制了下面兩幅尚不完整的統(tǒng)計(jì)圖.請你根據(jù)統(tǒng)計(jì)圖中所提供的信息解答下列問題:
(1)接受問卷調(diào)查的學(xué)生共有_______人,扇形統(tǒng)計(jì)圖中“基本了解”部分所對應(yīng)扇形的圓心角為_______°;
(2)請補(bǔ)全條形統(tǒng)計(jì)圖;
(3)若該中學(xué)共有學(xué)生1800人,請根據(jù)上述調(diào)查結(jié)果,估計(jì)該中學(xué)學(xué)生中對校園安全知識 達(dá)到“了解”和“基本了解”程度的總?cè)藬?shù);
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),B在x軸上,四邊形OACB為平行四邊形,且
∠AOB=60°,反比例函數(shù) (k>0)在第一象限內(nèi)過點(diǎn)A,且與BC交于點(diǎn)F。當(dāng)F為BC的中點(diǎn),且S△AOF=12 時(shí),OA的長為____.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com