【題目】在精準(zhǔn)扶貧的過程中,某駐村服務(wù)隊結(jié)合當(dāng)?shù)馗呱降匦危瑳Q定在該村種植中藥材川香、貝母、黃連增加經(jīng)濟(jì)收人,經(jīng)過一段時間,該村已種植的川香、貝母、黃連面積之比4:3:5,是根據(jù)中藥材市場對川香、貝母、黃連的需求量,將在該村余下土地上繼續(xù)種植這三種中藥材,經(jīng)測算需將余下土地面積的種植黃連,則黃連種植總面積將達(dá)到這三種中藥材種植總面積的.為使川香種植總面積與貝母種植總面積之比達(dá)到3:4,則該村還需種植貝母的面積與該村種植這三種中藥材的總面積之比是____.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】 如圖,在△ABC中,AB=AC.
(1)用尺規(guī)作圖法在AC邊上找一點(diǎn)D,使得BD=BC(保留作圖痕跡,不要求寫作法):
(2)若∠A=30°,求∠ABD的大小.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形中,,是邊的中點(diǎn),點(diǎn)是正方形內(nèi)一動點(diǎn),,連接,將線段繞點(diǎn)逆時針旋轉(zhuǎn)得,連接,.則線段長的最小值( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】東坡商貿(mào)公司購進(jìn)某種水果的成本為20元/kg,經(jīng)過市場調(diào)研發(fā)現(xiàn),這種水果在未來48天的銷售單價p(元/kg)與時間t(天)之間的函數(shù)關(guān)系式為:
,且其日銷售量y(kg)與時間t(天)的關(guān)系如下表:
(1)已知y與t之間的變化規(guī)律符合一次函數(shù)關(guān)系,試求在第30天的日銷售量是多少?
(2)問哪一天的銷售利潤最大?最大日銷售利潤為多少?
(3)在實(shí)際銷售的前24天中,公司決定每銷售1kg水果就捐贈n元利潤(n<9)給“精準(zhǔn)扶貧”對象.現(xiàn)發(fā)現(xiàn):在前24天中,每天扣除捐贈后的日銷售利潤隨時間t的增大而增大,求n的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,直線l2:與x軸交于點(diǎn)A;與y軸交于點(diǎn)B,以x軸為對稱軸作直線的軸對稱圖形的直線l2,點(diǎn)A1,A2,A3…在直線l1上,點(diǎn)B1,B2,B3…在x正半軸上,點(diǎn)C1,C2,C3…在直線l2上,若△A1B1O、△A2B2B1、△A2B1B2、…△AnBnBn﹣1均為等邊三角形,四邊形A1B1C1O、四邊形A2B2C2B1、四邊形A2B1C2B2…、四邊形AnBnnBn﹣1的面積分別是S1、S2、S3、…、Sn,則Sn為_____.(用含有n的代數(shù)式表示)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面在角坐標(biāo)系中,拋物線y=x2-2x-3與x軸交與點(diǎn)A,B(點(diǎn)A在點(diǎn)B的左側(cè))交y軸于點(diǎn)C,點(diǎn)D為拋物線的頂點(diǎn),對稱軸與x軸交于點(diǎn)E.
(1)連結(jié)BD,點(diǎn)M是線段BD上一動點(diǎn)(點(diǎn)M不與端點(diǎn)B,D重合),過點(diǎn)M作MN⊥BD交拋物線于點(diǎn)N(點(diǎn)N在對稱軸的右側(cè)),過點(diǎn)N作NH⊥x軸,垂足為H,交BD于點(diǎn)F,點(diǎn)P是線段OC上一動點(diǎn),當(dāng)MN取得最大值時,求HF+FP+PC的最小值;
(2)在(1)中,當(dāng)MN取得最大值HF+FP+1/3PC取得小值時,把點(diǎn)P向上平移個單位得到點(diǎn)Q,連結(jié)AQ,把△AOQ繞點(diǎn)O瓶時針旋轉(zhuǎn)一定的角度(0°<<360°),得到△AOQ,其中邊AQ交坐標(biāo)軸于點(diǎn)C在旋轉(zhuǎn)過程中,是否存在一點(diǎn)G使得?若存在,請直接寫出所有滿足條件的點(diǎn)Q的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,CA=CB=10,AB=12,以BC為直徑的圓⊙O交AC于點(diǎn)G,交AB于點(diǎn)D,過點(diǎn)D作⊙O的切線,交CB的延長線于點(diǎn)E,交AC于點(diǎn)F.則下列結(jié)論:①DF⊥AC;②DO=DB;③cos∠E=.正確的是__.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我國古代偉大的數(shù)學(xué)家劉微將勾股形(古人稱直角三角形為勾股形)分割成一個正方形和兩對全等的直角三角形.后人借助這種分割方法所得的圖形證明了勾股定理,如圖所示若a=3,b=4,則該三角形的面積為( 。
A. 10B. 12C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在一個不透明的口袋里裝有四個分別標(biāo)有1、2、3、4的小球,它們的形狀、大小等完全相同.小黑先從口袋里隨機(jī)不放回地取出一個小球,記下數(shù)字為x;小白在剩下有三個小球中隨機(jī)取出一個小球,記下數(shù)字y.
(1)計算由x、y確定的點(diǎn)(x,y)在函數(shù)圖象上的概率;
(2)小黑、小白約定做一個游戲,其規(guī)則是:若x、y滿足xy>6,則小黑勝;若x、y滿足xy<6,則小白勝.這個游戲規(guī)則公平嗎?說明理由
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com