【題目】如圖1,△ABC中,點D在線段AB上,點E在線段CB延長線上,且BE=CD,EP∥AC交直線CD于點P,交直線AB于點F,∠ADP=∠ACB.
(1)圖1中是否存在與AC相等的線段?若存在,請找出,并加以證明,若不存在,說明理由;
(2)若將“點D在線段AB上,點E在線段CB延長線上”改為“點D在線段BA延長線上,點E在線段BC延長線上”,其他條件不變(如圖2).當∠ABC=90°,∠BAC=60°,AB=2時,求線段PE的長.
【答案】(1)見解析;(2)6
【解析】(1)先證△CBD∽△ABC,再轉(zhuǎn)化比例線段即可得出答案;
(2)利用平行線的性質(zhì)、30度角所對的直角邊等于斜邊的一半、三角形中位線定理即可得出答案.
解:(1)AC=BF.證明如下:
如圖1,∵∠ADP=∠ACD+∠A,∠ACB=∠ACD+∠BCD,∠ADP=∠ACB,
∴∠BCD=∠A,
又∵∠CBD=∠ABC,
∴△CBD∽△ABC,
∴,①
∵FE∥AC,
∴,②
由①②可得, ,
∵BE=CD,
∴BF=AC;
(2)如圖2,∵∠ABC=90°,∠BAC=60°,
∴∠ACB=30°=∠ADP,
∴∠BCD=60°,∠ACD=60°﹣30°=30°,
∵PE∥AC,
∴∠E=∠ACB=30°,∠CPE=∠ACD=30°,
∴CP=CE,
∵BE=CD,
∴BC=DP,
∵∠ABC=90°,∠D=30°,
∴BC=CD,
∴DP=CD,即P為CD的中點,
又∵PF∥AC,
∴F是AD的中點,
∴FP是△ADC的中位線,
∴FP=AC,
∵∠ABC=90°,∠ACB=30°,
∴AB=AC,
∴FP=AB=2,
∵DP=CP=BC,CP=CE,
∴BC=CE,即C為BE的中點,
又∵EF∥AC,
∴A為FB的中點,
∴AC是△BEF的中位線,
∴EF=2AC=4AB=8,
∴PE=EF﹣FP=8﹣2=6.
科目:初中數(shù)學 來源: 題型:
【題目】(1)如圖①,△ABC中,點D,E在邊BC上,AD平分∠BAC,AE⊥BC,∠B=35°,∠C=65°,求∠DAE的度數(shù);
(2)如圖②,若把(1)中的條件“AE⊥BC“變成“F為DA延長線上一點,FE⊥BC”,其他條件不變,求∠F的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,點A坐標是(0,a),點B坐標是(b,0),且a、b滿足a2﹣12a+36+=0
(1)求A、B兩點的坐標;
(2)如圖1,點C為x軸負半軸一動點,OC<OB,BD⊥AC于D交y軸于點E,求證:DO平分∠CDB;
(3)如圖2,點F為AB中點,點G為x軸正半軸點B右側(cè)一動點,過點F作FG的垂線FH,交y軸的負半軸于點H,那么當點G的位置不斷變化時,S△AFH﹣S△FBG的值是否發(fā)生變化?若變化,請說明理由,若不變化,請求出相應(yīng)結(jié)果.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,∠B=90°,AB=12,BC=24,動點P從點A開始沿邊AB向終點B以每秒2個單位長度的速度移動,動點Q從點B開始沿邊BC以每秒4個單位長度的速度向終點C移動,如果點P、Q分別從點A、B同時出發(fā),那么△PBQ的面積S隨出發(fā)時間t(s)如何變化?寫出函數(shù)關(guān)系式及t的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,海中有一個小島A,它的周圍15海里內(nèi)有暗礁,今有貨船由西向東航行,開始在A島南偏西60° 的B處,往東航行20海里后到達該島南偏西30° 的C處后,貨船繼續(xù)向東航行,你認為貨船航行途中_____ 觸礁的危險.(填寫:“有”或“沒有”)
參考數(shù)據(jù):sin60°=cos30°≈0.866.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,有一塊含30°角的直角三角板OAB的直角邊BO的長恰與另一塊等腰直角三角板ODC的斜邊OC的長相等,把這兩塊三角板放置在平面直角坐標系中,且OB=3.
(1)若某反比例函數(shù)的圖象的一個分支恰好經(jīng)過點A,求這個反比例函數(shù)的解析式;
(2)若把含30°角的直角三角板繞點O按順時針方向旋轉(zhuǎn)后,斜邊OA恰好落在x軸上,點A落在點A′處,試求圖中陰影部分的面積.(結(jié)果保留π)
【答案】(1)反比例函數(shù)的解析式為y=;(2)S陰影=6π-.
【解析】分析:(1)根據(jù)tan30°=,求出AB,進而求出OA,得出A的坐標,設(shè)過A的雙曲線的解析式是y=,把A的坐標代入求出即可;(2)求出∠AOA′,根據(jù)扇形的面積公式求出扇形AOA′的面積,求出OD、DC長,求出△ODC的面積,相減即可求出答案.
本題解析:
(1)在Rt△OBA中,∠AOB=30°,OB=3,
∴AB=OB·tan 30°=3.
∴點A的坐標為(3,3).
設(shè)反比例函數(shù)的解析式為y= (k≠0),
∴3=,∴k=9,則這個反比例函數(shù)的解析式為y=.
(2)在Rt△OBA中,∠AOB=30°,AB=3,
sin ∠AOB=,即sin 30°=,
∴OA=6.
由題意得:∠AOC=60°,S扇形AOA′==6π.
在Rt△OCD中,∠DOC=45°,OC=OB=3,
∴OD=OC·cos 45°=3×=.
∴S△ODC=OD2==.
∴S陰影=S扇形AOA′-S△ODC=6π-.
點睛:本題考查了勾股定理、待定系數(shù)法求函數(shù)解析式、特殊角的三角函數(shù)值、扇形的面積及等腰三角形的性質(zhì),本題屬于中檔題,難度不大,將不規(guī)則的圖形的面積表示成多個規(guī)則圖形的面積之和是解答本題的關(guān)鍵.
【題型】解答題
【結(jié)束】
26
【題目】矩形ABCD一條邊AD=8,將矩形ABCD折疊,使得點B落在CD邊上的點P處.
(1)如圖①,已知折痕與邊BC交于點O,連接AP,OP,OA.
① 求證:△OCP∽△PDA;
② 若△OCP與△PDA的面積比為1:4,求邊AB的長.
(2)如圖②,在(1)的條件下,擦去AO和OP,連接BP.動點M在線段AP上(不與點P,A重合),動點N在線段AB的延長線上,且BN=PM,連接MN交PB于點F,作ME⊥BP于點E.試問動點M,N在移動的過程中,線段EF的長度是否發(fā)生變化?若不變,求出線段EF的長度;若變化,說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點D、E是等邊△ABC的邊BC、AC上的點,且CD=AE,AD、BE相交于P點,BQ⊥AD于Q,已知PE=1,PQ=2.5,則AD等于( )
A.5B.6C.7D.8
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC是邊長為3的等邊三角形,P是AB邊上的一個動點,由A向B運動(P不與A、B重合),Q是BC延長線上一動點,與點P同時以相同的速度由C向BC延長線方向運動(Q不與C重合),
(1)當∠BPQ=90°時,求AP的長;
(2)過P作PE⊥AC于點E,連結(jié)PQ交AC于D,在點P、Q的運動過程中,線段DE的長是否發(fā)生變化?若不變,求出DE的長度;若變化,求出變化范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com